Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
+ Quan sát đồ thị, ta thấy parabol có bề lõm quay lên trên nên a > 0.
Do đó ta loại phương án A vì a = –1 < 0.
+ Quan sát đồ thị, ta thấy parabol có trục đối xứng là đường thẳng x = 1.
⦁ Ở phương án B, đồ thị của hàm số y = x2 + 2x – 2 có trục đối xứng là đường thẳng \(x = - \frac{b}{{2a}} = - \frac{2}{{2.1}} = - 1 \ne 1\).
Do đó ta loại phương án B.
⦁ Ở phương án C, đồ thị của hàm số y = 2x2 – 4x – 2 có trục đối xứng là đường thẳng \(x = - \frac{b}{{2a}} = - \frac{{ - 4}}{{2.2}} = 1\).
• Ở phương án D, đồ thị của hàm số y = x2 – 2x – 1 có trục đối xứng là đường thẳng \(x = - \frac{b}{{2a}} = - \frac{{ - 2}}{{2.1}} = 1\).
+ Quan sát đồ thị, ta thấy parabol đi qua điểm A(0; –1).
• Thay x = 0, y = –1 vào hàm số ở phương án C, ta có: –1 = 2.02 – 4.0 – 2 (vô lí).
Do đó đồ thị của hàm số ở phương án C không đi qua điểm A(0; –1).
Vì vậy ta loại phương án C.
• Thay x = 0, y = –1 vào hàm số ở phương án D, ta có –1 = 02 – 2.0 – 1 (đúng).
Do đó đồ thị của hàm số ở phương án D đi qua điểm A(0; –1).
Vậy ta chọn phương án D.
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số y = ax2 + bx + c có đồ thị như hình vẽ:
Mệnh đề nào dưới đây đúng?
Câu 3:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - 2x + 1,\,\,\,\,khi\,\,x \le - 3\\\frac{{x + 7}}{2},\,\,\,\,\,\,\,\,khi\,\,x > - 3\end{array} \right.\). Nếu f(x0) = 5 thì x0 bằng:
Câu 5:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận