Câu hỏi:
24/08/2022 239
Cho hàm số \(y = f\left( x \right) = \frac{{x + 2}}{{{x^2} + 1}}\). Gọi (C) là đồ thị của hàm số đã cho và điểm M(m + 1; 1). Giá trị của tham số m để điểm M nằm trên đồ thị (C) là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Vì M(m + 1; 1) ∈ (C) nên ta có \(1 = \frac{{m + 1 + 2}}{{{{\left( {m + 1} \right)}^2} + 1}}\) (vì (m + 1)2 + 1 > 0, ∀m ∈ ℝ)
Tức là (m + 1)2 + 1 = m + 3.
Khi đó m2 + m – 1 = 0.
Suy ra \(\left[ \begin{array}{l}m = \frac{{ - 1 + \sqrt 5 }}{2}\\m = \frac{{ - 1 - \sqrt 5 }}{2}\end{array} \right.\)
Vậy ta chọn phương án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Vì parabol có trục đối xứng là đường thẳng \(x = \frac{1}{3}\) nên ta có \( - \frac{b}{{2a}} = \frac{1}{3}\).
Suy ra –3b = 2a.
Tức là, 2a + 3b = 0 (1)
Theo đề, ta có parabol đi qua điểm A(1; 3).
Suy ra 3 = a.12 + b.1 + 4.
Khi đó a + b + 4 = 3.
Do đó a + b = –1 (2)
Từ (1), (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}2a + 3b = 0\\a + b = - 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = - 3\\b = 2\end{array} \right.\).
Vì vậy a + 2b = –3 + 2.2 = 1.
Vậy ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Biểu thức f(x) có nghĩa khi và chỉ khi \(\left\{ \begin{array}{l}16 - {x^2} \ge 0\\2023x + 2024m \ge 0\end{array} \right.\).
Tức là, \(\left\{ \begin{array}{l} - 4 \le x \le 4\\x \ge - \frac{{2024m}}{{2023}}\end{array} \right.\).
Do đó tập xác định của hàm số là D = \(\left[ { - 4;4} \right] \cap \left[ { - \frac{{2024m}}{{2023}}; + \infty } \right)\)
Ta có tập xác định của hàm số đã cho chỉ có đúng một phần tử.
Nghĩa là, D = \(\left[ { - 4;4} \right] \cap \left[ { - \frac{{2024m}}{{2023}}; + \infty } \right)\) chỉ có đúng một phần tử.
Û \(4 = - \frac{{2024m}}{{2023}}\) Û –2024m = 8092.
Do đó \(m = - \frac{{2023}}{{506}}\).
Vì vậy a = –2023 và b = 506 (vì a ∈ ℤ, b ∈ ℕ*).
Vậy a + b = –2023 + 506 = –1517.
Do đó ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.