Câu hỏi:

25/08/2022 519

Một xưởng sản xuất sử dụng ba loại máy để sản xuất hai loại sản phẩm quần và áo. Để sản xuất 1 cái áo lãi 200 nghìn đồng người ta sử dụng máy I trong 1 giờ, máy II trong 2 giờ và máy III trong 3 giờ. Để sản xuất 1 cái quần lãi 300 nghìn đồng người ta sử dụng máy I trong 3 giờ, máy II trong 4 giờ mà máy III trong 2 giờ. Biết rằng máy I chỉ hoạt động không quá 50 giờ, máy II hoạt động không quá 70 giờ và máy III hoạt động không quá 48 giờ. Hỏi phải sản xuất bao nhiêu quần và áo để xưởng sản xuất đạt mức lãi cao nhất ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Gọi x, y (cái) lần lượt là số áo và số quần mà xưởng cần sản xuất (x, y ℕ).

Khi đó ta có:

x + 3y (giờ) là thời gian hoạt động của máy I;

2x + 4y (giờ) là thời gian hoạt động của máy II;

3x + 2y (giờ) là thời gian hoạt động của máy III.

Số tiền lãi của nhà máy L = 200x + 300y (nghìn đồng).

Do máy I chỉ hoạt động không quá 50 giờ, máy II hoạt động không quá 70 giờ và máy III hoạt động không quá 48 giờ nên ta có hệ x+3y502x+4y703x+2y48 .

Khi đó bài toán trở thành tìm số tự nhiên x, y thỏa hệ x+3y502x+4y703x+2y48  để L = 200x + 300y đạt giá trị lớn nhất.

Ta biểu diễn miền nghiệm của hệ x+3y502x+4y703x+2y48  với x ≥ 0; y ≥ 0.

Một xưởng sản xuất sử dụng ba loại máy để sản xuất hai loại sản phẩm quần và áo (ảnh 1)

 

Miền nghiệm của hệ là miền ngũ giác OABCD (kể cả biên) với O(0; 0), A0;503 , B(5; 15), C132;574 , D(16; 0).

L lớn nhất tại các đỉnh của ngũ giác OABCD, do x, y ℕ nên ta chỉ cần tính giá trị của L tại các đỉnh O, B, D và so sánh.

Ta có:

L(0; 0) = 0, L(5; 15) = 5500, L(16; 0) = 3200.

Do đó, Lmax  = 5500 tại x = 5 và y = 15.

Vậy phải sản xuất 5 cái áo và 15 cái quần để lợi nhuận lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Giá trị nhỏ nhất của biểu thức F(x; y) = 3y − 2x trên miền xác định bởi hệ y2x22yx4x+y5là :

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có y2x22yx4x+y5y2x202yx40x+y50  (1)

Trong mặt phẳng Oxy, vẽ các đường thẳng d1: y − 2x − 2 = 0, d2: 2y − x − 4 = 0, d: x + y − 5 = 0.

Giá trị nhỏ nhất của biểu thức F(x; y) = 3y − 2x trên miền xác định bởi hệ (ảnh 1)

Khi đó miền nghiệm của hệ bất phương trình là miền tam giác ABC (kể cả biên) như hình vẽ trên.

Xét các đỉnh của miền khép kín tạo bởi hệ (1) là:

A(0; 2), B(2; 3), C(1; 4)

Ta có: F(x; y) = 3y − 2x

Khi đó: F(0;2)=3.22.0=6F(2;3)=3.32.2=5F(1;4)=3.42.1=10 Fmin = 5.

Vậy giá trị nhỏ nhất của biểu thức F bằng 5 tại (x; y) = (2; 3).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Trước hết, ta vẽ đường thẳng: (d1): 2x + 3y = 5

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 2.0 + 3.0 = 0 < 5, thoả mãn bất phương trình 2x + 3y < 5. Vậy O(0; 0) thuộc miền nghiệm của bất phương trình. Miền nghiệm của bất phương trình là nửa mặt phẳng không bị gạch chéo (không kể biên) của (d1).

Vẽ đường thẳng (d2): .

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0+32.0=0<5 , thoả mãn bất phương trình x+32y<5 . Vậy O(0; 0) thuộc miền nghiệm của bất phương trình. Miền nghiệm của bất phương trình là nửa mặt phẳng không bị gạch chéo (không kể biên) của (d2).

Miền nghiệm được biểu diễn trong hình dưới đây

Cho hệ . Gọi S1 là tập nghiệm của bất phương trình (1), S2 là tập nghiệm của bất  (ảnh 1)

Từ đồ thị biểu diễn miền nghiệm của hệ bất phương trình ta có S1 S2; S1 = S; S2 S. Vậy S1 S2.


 

Câu 3

Giá trị lớn nhất của biểu thức G(x; y) = 10x + 20y trên miền xác định bởi hệ x+2y100y4x0y0  là :

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay