Câu hỏi:

25/08/2022 6,888

Cho hệ 2x+3y<5   (1)x+32y<5   (2) . Gọi S1 là tập nghiệm của bất phương trình (1), S2 là tập nghiệm của bất phương trình (2) và S là tập nghiệm của hệ thì

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Trước hết, ta vẽ đường thẳng: (d1): 2x + 3y = 5

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 2.0 + 3.0 = 0 < 5, thoả mãn bất phương trình 2x + 3y < 5. Vậy O(0; 0) thuộc miền nghiệm của bất phương trình. Miền nghiệm của bất phương trình là nửa mặt phẳng không bị gạch chéo (không kể biên) của (d1).

Vẽ đường thẳng (d2): .

Xét điểm O(0; 0) thay vào phương trình đường thẳng ta có 0+32.0=0<5 , thoả mãn bất phương trình x+32y<5 . Vậy O(0; 0) thuộc miền nghiệm của bất phương trình. Miền nghiệm của bất phương trình là nửa mặt phẳng không bị gạch chéo (không kể biên) của (d2).

Miền nghiệm được biểu diễn trong hình dưới đây

Cho hệ . Gọi S1 là tập nghiệm của bất phương trình (1), S2 là tập nghiệm của bất  (ảnh 1)

Từ đồ thị biểu diễn miền nghiệm của hệ bất phương trình ta có S1 S2; S1 = S; S2 S. Vậy S1 S2.


 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Giá trị nhỏ nhất của biểu thức F(x; y) = 3y − 2x trên miền xác định bởi hệ y2x22yx4x+y5là :

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có y2x22yx4x+y5y2x202yx40x+y50  (1)

Trong mặt phẳng Oxy, vẽ các đường thẳng d1: y − 2x − 2 = 0, d2: 2y − x − 4 = 0, d: x + y − 5 = 0.

Giá trị nhỏ nhất của biểu thức F(x; y) = 3y − 2x trên miền xác định bởi hệ (ảnh 1)

Khi đó miền nghiệm của hệ bất phương trình là miền tam giác ABC (kể cả biên) như hình vẽ trên.

Xét các đỉnh của miền khép kín tạo bởi hệ (1) là:

A(0; 2), B(2; 3), C(1; 4)

Ta có: F(x; y) = 3y − 2x

Khi đó: F(0;2)=3.22.0=6F(2;3)=3.32.2=5F(1;4)=3.42.1=10 Fmin = 5.

Vậy giá trị nhỏ nhất của biểu thức F bằng 5 tại (x; y) = (2; 3).

Câu 2

Giá trị lớn nhất của biểu thức G(x; y) = 10x + 20y trên miền xác định bởi hệ x+2y100y4x0y0  là :

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Trong mặt phẳng Oxy kẻ đường thẳng d1 : x + 2y − 10 = 0, d2 : y = 4.

Khi đó miền nghiệm của hệ bất phương trình là miền tứ giác OABC (kể cả biên) được tô đậm như hình vẽ.

Giá trị lớn nhất của biểu thức G(x; y) = 10x + 20y trên miền xác định bởi hệ  (ảnh 1)

Xét các đỉnh của miền khép kín được tạo bởi hệ là: O(0; 0), A(0; 4), B(2; 4), C(10; 0)

Ta có : G(x; y) = 10x + 20y

Khi đó:G(0;0)=0G(0;4)=80G(2;4)=100G(10;0)=100 Gmax = 100.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay