Câu hỏi:

25/08/2022 15,831

Cho ∆ABC có AB = 4, AC = 5 và \(\cos A = \frac{3}{5}\). Độ dài đường cao kẻ từ A bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Theo định lí côsin, ta có

BC2 = AB2 + AC2 – 2.AB.AC.cosA

\( = {4^2} + {5^2} - 2.4.5.\frac{3}{5} = 17\).

Suy ra \(BC = \sqrt {17} \).

Nửa chu vi ∆ABC là:

\(p = \frac{{AB + AC + BC}}{2} = \frac{{4 + 5 + \sqrt {17} }}{2} = \frac{{9 + \sqrt {17} }}{2}\).

Diện tích ∆ABC là:

\(S = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} \)

\( = \sqrt {\frac{{9 + \sqrt {17} }}{2}\left( {\frac{{9 + \sqrt {17} }}{2} - 4} \right)\left( {\frac{{9 + \sqrt {17} }}{2} - 5} \right)\left( {\frac{{9 + \sqrt {17} }}{2} - \sqrt {17} } \right)} \)

= 8     (đơn vị diện tích).

Ta có \(S = \frac{1}{2}.BC.{h_a}\)

\( \Leftrightarrow 8 = \frac{1}{2}.\sqrt {17} .{h_a}\)

\( \Leftrightarrow {h_a} = \frac{{16\sqrt {17} }}{{17}}\)

Vậy ta chọn đáp án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Bán kính đường tròn ngoại tiếp ∆ABC là R = 3.

∆ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {30^\circ + 45^\circ } \right) = 105^\circ \).

Theo hệ quả định lí sin, ta có:

a = 2R.sinA = 2.3.sin30° = 3.

b = 2R.sinB = 2.3.sin45° = \(3\sqrt 2 \).

c = 2R.sinC = 2.3.sin105° = \(\frac{{3\sqrt 6 + 3\sqrt 2 }}{2}\).

Nửa chu vi của ∆ABC là:

\(p = \frac{{a + b + c}}{2} = \frac{{3 + 3\sqrt 2 + \frac{{3\sqrt 6 + 3\sqrt 2 }}{2}}}{2} = \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}\).

Ta có S = pr = \(\frac{1}{2}\)ab.sinC

\( \Leftrightarrow \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}.r = \frac{1}{2}.3.3\sqrt 2 .\sin 105^\circ \)

\( \Leftrightarrow \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}.r = \frac{{9 + 9\sqrt 3 }}{4}\)

r ≈ 0,94.

Vậy ta chọn phương án B.

Câu 2

Cho ∆ABC thỏa mãn sinC = 2sinB.cosA. Khi đó ∆ABC là:

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

• Theo hệ quả định lí sin, ta có:

\(\sin C = \frac{c}{{2R}}\)\(\sin B = \frac{b}{{2R}}\).

• Theo hệ quả của định lí côsin, ta có:

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

• Ta có sinC = 2sinB.cosA

\( \Leftrightarrow \frac{c}{{2R}} = 2.\frac{b}{{2R}}.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

\[ \Leftrightarrow c = 2b.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]

\[ \Leftrightarrow c = \frac{{{b^2} + {c^2} - {a^2}}}{c}\]

c2 = b2 + c2 – a2

b2 = a2

b = a (vì a, b > 0)

Hay AC = BC.

Suy ra ∆ABC cân tại C.

Vậy ta chọn phương án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay