Câu hỏi:
25/08/2022 1,555Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
⦁ ∆ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {60^\circ + 40^\circ } \right) = 80^\circ \).
Do đó phương án A đúng.
⦁ Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\).
Suy ra \(a = \frac{{c.\sin A}}{{\sin C}} = \frac{{14.\sin 60^\circ }}{{\sin 80^\circ }} \approx 12,3\).
Do đó phương án B đúng.
Ta có \(\frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
Suy ra \(b = \frac{{c.\sin B}}{{\sin C}} = \frac{{14.\sin 40^\circ }}{{\sin 80^\circ }} \approx 9,1\).
Do đó phương án C đúng, phương án D sai.
Vậy ta chọn phương án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Theo định lí côsin, ta có
BC2 = AB2 + AC2 – 2.AB.AC.cosA
\( = {4^2} + {5^2} - 2.4.5.\frac{3}{5} = 17\).
Suy ra \(BC = \sqrt {17} \).
Nửa chu vi ∆ABC là:
\(p = \frac{{AB + AC + BC}}{2} = \frac{{4 + 5 + \sqrt {17} }}{2} = \frac{{9 + \sqrt {17} }}{2}\).
Diện tích ∆ABC là:
\(S = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)} \)
\( = \sqrt {\frac{{9 + \sqrt {17} }}{2}\left( {\frac{{9 + \sqrt {17} }}{2} - 4} \right)\left( {\frac{{9 + \sqrt {17} }}{2} - 5} \right)\left( {\frac{{9 + \sqrt {17} }}{2} - \sqrt {17} } \right)} \)
= 8 (đơn vị diện tích).
Ta có \(S = \frac{1}{2}.BC.{h_a}\)
\( \Leftrightarrow 8 = \frac{1}{2}.\sqrt {17} .{h_a}\)
\( \Leftrightarrow {h_a} = \frac{{16\sqrt {17} }}{{17}}\)
Vậy ta chọn đáp án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Bán kính đường tròn ngoại tiếp ∆ABC là R = 3.
∆ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {30^\circ + 45^\circ } \right) = 105^\circ \).
Theo hệ quả định lí sin, ta có:
⦁ a = 2R.sinA = 2.3.sin30° = 3.
⦁ b = 2R.sinB = 2.3.sin45° = \(3\sqrt 2 \).
⦁ c = 2R.sinC = 2.3.sin105° = \(\frac{{3\sqrt 6 + 3\sqrt 2 }}{2}\).
Nửa chu vi của ∆ABC là:
\(p = \frac{{a + b + c}}{2} = \frac{{3 + 3\sqrt 2 + \frac{{3\sqrt 6 + 3\sqrt 2 }}{2}}}{2} = \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}\).
Ta có S = pr = \(\frac{1}{2}\)ab.sinC
\( \Leftrightarrow \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}.r = \frac{1}{2}.3.3\sqrt 2 .\sin 105^\circ \)
\( \Leftrightarrow \frac{{6 + 9\sqrt 2 + 3\sqrt 6 }}{4}.r = \frac{{9 + 9\sqrt 3 }}{4}\)
⇔ r ≈ 0,94.
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.