Câu hỏi:

25/08/2022 1,796

Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C.

Media VietJack

Người ta đo được khoảng cách AB = 40 m, BC = 70 m, \(\widehat {CAB} = 45^\circ \). Vậy sau khi đo đạc và tính toán, ta được khoảng cách AC gần nhất với giá trị nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Áp dụng định lí côsin cho ∆ABC, ta được:

BC2 = AB2 + AC2 – 2.AB.AC.cosA

Suy ra 702 = 402 + AC2 – 2.40.AC.cos45°

Do đó \(A{C^2} - 40\sqrt 2 .AC - 3300 = 0\)

Vì vậy \(AC = 10\sqrt {41} + 20\sqrt 2 \) hoặc \(AC = - 10\sqrt {41} + 20\sqrt 2 \).

Vì AC > 0 nên ta nhận \(AC = 10\sqrt {41} + 20\sqrt 2 \) ≈ 92,3 (m)

Do đó ta chọn phương án C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có \(\widehat {BAC} + \widehat {CAH} = \widehat {BAH} = 90^\circ \).

\[ \Rightarrow \widehat {BAC} = 90^\circ - 30^\circ = 60^\circ \].

Ta có \(\widehat {ABC} = \widehat {ABD} + \widehat {DBC} = 90^\circ + 15^\circ 30' = 105^\circ 30'\).

∆ABC có \(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \) (định lí tổng ba góc trong một tam giác)

Suy ra \(\widehat {ACB} = 180^\circ - \left( {\widehat {BAC} + \widehat {ABC}} \right) = 180^\circ - \left( {60^\circ + 105^\circ 30'} \right) = 14^\circ 30'\).

Áp dụng định lí sin cho ∆ABC, ta được \(\frac{{AC}}{{\sin \widehat {ABC}}} = \frac{{AB}}{{\sin \widehat {ACB}}}\)

Suy ra \(AC = \frac{{AB.\sin \widehat {ABC}}}{{\sin \widehat {ACB}}} = \frac{{70.\sin 105^\circ 30'}}{{\sin 14^\circ 30'}} \approx 269,4\) (m)

∆ACH vuông tại H: \(\sin \widehat {CAH} = \frac{{CH}}{{AC}}\)

Suy ra \(CH = AC.\sin \widehat {CAH} \approx 269,4.\sin 30^\circ = 134,7\) (m)

Vậy ngọn núi cao khoảng 134,7 m.

Giá trị này gần với 135 m nhất.

Do đó ta chọn phương án A.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Bài toán trở thành tìm bán kính đường tròn ngoại tiếp R của ∆ABC.

Nửa chu vi của ∆ABC là:

\[p = \frac{{AB + BC + AC}}{2} = \frac{{2,56 + 4,18 + 6,17}}{2} = 6,455\] (cm)

Diện tích của ∆ABC là:

\(S = \sqrt {p\left( {p - AB} \right)\left( {p - BC} \right)\left( {p - AC} \right)} \)

\( = \sqrt {6,455\left( {6,455 - 2,56} \right)\left( {6,455 - 4,18} \right)\left( {6,455 - 6,17} \right)} \)

≈ 4,0375 (cm2).

Ta có \(S = \frac{{AB.BC.AC}}{{4R}}\)

Suy ra \(R = \frac{{AB.BC.AC}}{{4S}} = \frac{{2,56.4,18.6,17}}{{4.4,0375}} \approx 4,088\) (cm).

Vậy bán kính của chiếc đĩa bằng khoảng 4,088 cm.

Do đó ta chọn phương án C.

Câu 3

Cho ∆ABC thỏa mãn \[\sin A = \frac{{\sin B + \sin C}}{{\cos B + \cos C}}\]. Khi đó ∆ABC là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho ∆ABC thỏa mãn sin2A = sinB.sinC. Khẳng định nào sau đây đúng nhất?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay