Câu hỏi:
25/08/2022 6,092Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
• Theo hệ quả của định lí côsin, ta có:
\(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\) và \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\).
• Theo hệ quả định lí sin, ta có:
\(\sin A = \frac{a}{{2R}};\,\,\sin B = \frac{b}{{2R}};\,\,\sin C = \frac{c}{{2R}}\).
• Ta có \[\sin A = \frac{{\sin B + \sin C}}{{\cos B + \cos C}}\]
⇔ sinA(cosB + cosC) = sinB + sinC
\( \Leftrightarrow \frac{a}{{2R}}.\left( {\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} + \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}} \right) = \frac{b}{{2R}} + \frac{c}{{2R}}\)
\( \Leftrightarrow \frac{a}{{2R}}.\frac{1}{{2a}}\left( {\frac{{{a^2} + {c^2} - {b^2}}}{c} + \frac{{{a^2} + {b^2} - {c^2}}}{b}} \right) = \frac{{b + c}}{{2R}}\)
\( \Leftrightarrow \frac{1}{2}\left( {\frac{{{a^2} + {c^2} - {b^2}}}{c} + \frac{{{a^2} + {b^2} - {c^2}}}{b}} \right) = b + c\)
\( \Leftrightarrow \frac{{b\left( {{a^2} + {c^2} - {b^2}} \right) + c\left( {{a^2} + {b^2} - {c^2}} \right)}}{{bc}} = 2\left( {b + c} \right)\)
⇔ a2b + bc2 – b3 + a2c + b2c – c3 = 2b2c + 2bc2
⇔ b3 + c3 – (a2b + a2c) + (b2c + bc2) = 0
⇔ (b + c)(b2 – bc + c2) – a2(b + c) + bc(b + c) = 0
⇔ (b + c)(b2 – bc + c2 – a2 + bc) = 0
⇔ (b + c)(b2 + c2 – a2) = 0
⇔ b + c = 0 (vô lí vì b, c > 0) hoặc b2 + c2 = a2
⇔ AC2 + AB2 = BC2
Áp dụng định lí Pytago đảo, ta được ∆ABC vuông tại A.
Vậy ta chọn phương án A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có \(\widehat {BAC} + \widehat {CAH} = \widehat {BAH} = 90^\circ \).
\[ \Rightarrow \widehat {BAC} = 90^\circ - 30^\circ = 60^\circ \].
Ta có \(\widehat {ABC} = \widehat {ABD} + \widehat {DBC} = 90^\circ + 15^\circ 30' = 105^\circ 30'\).
∆ABC có \(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat {ACB} = 180^\circ - \left( {\widehat {BAC} + \widehat {ABC}} \right) = 180^\circ - \left( {60^\circ + 105^\circ 30'} \right) = 14^\circ 30'\).
Áp dụng định lí sin cho ∆ABC, ta được \(\frac{{AC}}{{\sin \widehat {ABC}}} = \frac{{AB}}{{\sin \widehat {ACB}}}\)
Suy ra \(AC = \frac{{AB.\sin \widehat {ABC}}}{{\sin \widehat {ACB}}} = \frac{{70.\sin 105^\circ 30'}}{{\sin 14^\circ 30'}} \approx 269,4\) (m)
∆ACH vuông tại H: \(\sin \widehat {CAH} = \frac{{CH}}{{AC}}\)
Suy ra \(CH = AC.\sin \widehat {CAH} \approx 269,4.\sin 30^\circ = 134,7\) (m)
Vậy ngọn núi cao khoảng 134,7 m.
Giá trị này gần với 135 m nhất.
Do đó ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Bài toán trở thành tìm bán kính đường tròn ngoại tiếp R của ∆ABC.
Nửa chu vi của ∆ABC là:
\[p = \frac{{AB + BC + AC}}{2} = \frac{{2,56 + 4,18 + 6,17}}{2} = 6,455\] (cm)
Diện tích của ∆ABC là:
\(S = \sqrt {p\left( {p - AB} \right)\left( {p - BC} \right)\left( {p - AC} \right)} \)
\( = \sqrt {6,455\left( {6,455 - 2,56} \right)\left( {6,455 - 4,18} \right)\left( {6,455 - 6,17} \right)} \)
≈ 4,0375 (cm2).
Ta có \(S = \frac{{AB.BC.AC}}{{4R}}\)
Suy ra \(R = \frac{{AB.BC.AC}}{{4S}} = \frac{{2,56.4,18.6,17}}{{4.4,0375}} \approx 4,088\) (cm).
Vậy bán kính của chiếc đĩa bằng khoảng 4,088 cm.
Do đó ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận