Câu hỏi:
25/08/2022 205Cho biết \(2\cos \alpha + \sqrt 2 \sin \alpha = 2\), với 0° < α < 90°. Giá trị của cotα bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Ta có \(2\cos \alpha + \sqrt 2 \sin \alpha = 2\)
\[ \Leftrightarrow \sqrt 2 \sin \alpha = 2 - 2\cos \alpha \]
⇒ 2sin2α = (2 – 2cosα)2
⇔ 2(1 – cos2α) = 4 – 8cosα + 4cos2α
⇔ 6cos2α – 8cosα + 2 = 0 (1)
Đặt t = cosα.
Vì 0° < α < 90° nên 0 < t < 1.
Phương trình (1) tương đương với: 6t2 – 8t + 2 = 0
\( \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = \frac{1}{3}\end{array} \right.\)
Vì 0 < t < 1 nên ta nhận \(t = \frac{1}{3}\).
Với \(t = \frac{1}{3}\), ta có \[\cos \alpha = \frac{1}{3}\].
Suy ra \[{\cos ^2}\alpha = \frac{1}{9}\]
Áp dụng Bài tập 5a, trang 65, Sách giáo khoa Toán 10, Tập một, ta có:
sin2α + cos2α = 1
\[ \Leftrightarrow {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - \frac{1}{9} = \frac{8}{9}\].
\( \Leftrightarrow \left[ \begin{array}{l}\sin \alpha = \frac{{2\sqrt 2 }}{3}\\\sin \alpha = - \frac{{2\sqrt 2 }}{3}\end{array} \right.\)
Vì 0° < α < 90° nên α là góc nhọn.
Do đó sinα > 0.
Vì vậy ta nhận \(\sin \alpha = \frac{{2\sqrt 2 }}{3}\).
Ta có \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{3}:\frac{{2\sqrt 2 }}{3} = \frac{1}{3}.\frac{3}{{2\sqrt 2 }} = \frac{1}{{2\sqrt 2 }} = \frac{{\sqrt 2 }}{4}\).
Vậy ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC và các khẳng định sau:
(I) b2 – c2 = a(b.cosC – c.cosB);
(II) (b + c)sinA = a(sinB + sinC);
(III) ha = 2R.sinB.sinC;
(IV) S = R.r.(sinA + sinB + sin C);
Số khẳng định đúng là:
Câu 2:
Giả sử CD = h là chiều cao của tháp, trong đó C là chân tháp.
Một người đứng tại vị trí A (\(\widehat {CAD} = 63^\circ ),\) không sang được bờ bên kia để đo chiều cao h của tháp nên chọn thêm một điểm B (ba điểm A, B, C thẳng hàng) cách A một khoảng 24 m và \[\widehat {CBD} = 48^\circ \] để tính toán được chiều cao của tháp. Chiều cao h của tháp gần nhất với:
Câu 3:
Từ vị trí A, người ta quan sát một cái cây cao mọc vuông góc với mặt đất như hình vẽ.
Biết vị trí quan sát cách mặt đất một khoảng AH = 4 m và khoảng cách từ chân đường vuông góc của vị trí quan sát A trên mặt đất tới gốc cây là HB = 20 m, \(\widehat {BAC} = 45^\circ \). Chiều cao của cây gần nhất với giá trị nào sau đây?
Câu 4:
Cho ∆ABC có a.sinA + b.sinB + c.sinC = ha + hb + hc. Khi đó ∆ABC là:
Câu 5:
Cho ∆ABC thỏa mãn \[\sin A = \frac{{\sin B + \sin C}}{{\cos B + \cos C}}\]. Khi đó ∆ABC là:
Câu 6:
Từ hai vị trí A và B của một tòa nhà, người ta quan sát được đỉnh C của ngọn núi. Biết rằng độ cao của tòa nhà là AB = 70 m, phương nhìn AC tạo với phương ngang AH một góc bằng 30°, phương nhìn BC tạo với phương ngang BD một góc bằng 15°30’.
Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?
Câu 7:
Cho biết tanα = –3 (0° ≤ α ≤ 180°). Giá trị của \(H = \frac{{6\sin \alpha - 7\cos \alpha }}{{6\cos \alpha + 7\sin \alpha }}\) bằng:
về câu hỏi!