Câu hỏi:

25/08/2022 1,264

Chứng minh rằng parabol (P): 12x2 luôn cắt đường thẳng (d): y=m1x+12m2+m tại hai điểm phân biệt A và B. Gọi x1;x2 là hoành độ hai điểm A, B. Tìm m sao cho x12+x22+6x1x2>2019

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình hoành độ giao điểm của P và d là:

12x2=m1x+12m2+m12x2m1x12m2m=01

Ta có Δ=m124.12.12m2m

Δ=m22m+1+m2+2mΔ=2m2+1>0

với mọi m

Suy ra phương trình 1 luôn có hai nghiệm phân biết với mọi m

Nên P luôn cắt d tại hai điểm phân biệt A và B

Theo vi-ét ta có: x1+x2=2m1x1.x2=m22m

Theo đề ta có: x12+x22+6x1x2>2019

x1+x22+4x1x22019>02m12+4m22m2019>04m28m+44m28m2019>016m2015>016m>2015m<201516

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) 

Ta có bảng giá trị sau        

x

-2

-1

0

1

2

y

2

0

2

Đồ thị hàm số y=12x2 là đường cong đi qua các điểm (-2;2); (-1; 12); (0;0); (1; 12); (2;2) và nhận trục Oy làm trục đối xứng.

a) Vẽ đồ thị (P) của hàm số y = 1/2x^2  b)Tìm giao điểm của đồ thị hàm số (P) với (ảnh 1)

b) Xét phương trình hoành độ giao điểm của đồ thị hàm số (P) và đường thẳng (d): 12x2=xx=0;x=2

Với x = 0 => y = 0 ta có giao điểm O(0;0)

Với x = 2 => y = 2 ta có giao điểm A(2;2)

Vậy giao điểm của đồ thị hàm số (P) và đường thẳng (d) là O(0;0); A(2;2)

Lời giải

Bảng sau cho một số giá trị tương ứng của x và y

Vẽ đồ thị của hàm số y = x^2. (ảnh 1)

Vẽ đồ thị:

Vẽ đồ thị của hàm số y = x^2. (ảnh 2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP