Câu hỏi:

13/07/2024 3,253 Lưu

Hai vòi nước cùng chảy vào một cái bể không có nước trong 6 giờ thì đầy bể. Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 25 bể. Hỏi nếu chảy riêng thì mỗi vòi chảy đầy bể trong bao lâu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi thời gian vòi thứ nhất chảy riêng đầy bể là  (giờ) (x>6)

thời gian vòi thứ hai chảy riêng đầy bể là y (giờ) (y>6)

Hai vòi nước cùng chảy vào một cái bể không có nước trong 6 giờ thì đầy bể

1x+1y=16(1) 

Vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được 25 bể  2.1x+3.1y=25 (2)

Từ (1) và (2) ta có hệ phương trình 1x+1y=162.1x+3.1y=25x=10y=15

Đối chiếu với điều kiện, giá trị x=10; y=15 thỏa mãn.

Vậy thời gian vòi thứ nhất chảy riêng đầy bể là 10 giờ, thời gian vòi thứ hai chảy riêng đầy bể là 15 giờ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi vận tốc của xe máy là x ( Đơn vị km/h, x>0)

                 Đổi 36 phút =35 giờ

                 Vận tốc của ô tô là x+10 km/h

                 Thời gian xe máy đi hết quãng đường AB là 120x ( giờ )

                 Thời gian ô tô đi hết quãng đường AB là 120x+10 ( giờ )

                 Lập luận để có PT:

                 120x120x+10=35

                 x2+10x2000=0x=50(loai)x=40(t/m)

                 Vậy: Vận tốc của xe máy là 40km/h và vậ tốc của ô tô là 50km/h

Lời giải

Gọi x, y(m) lần lượt là chiều dài và chiều rộng của mảnh vườn, điều kiện x>0; y>0 suy ra diện tích mảnh vườn là: xy (m2).

Do chiều dài lớn hơn chiều rộng của mảnh vườn là 15m nên ta có phương trình: x-y=15 (1).

Khi giảm chiều dài 2 m, tăng chiều rộng 3 m thì diện tích mảnh vườn tăng 44m2 nên ta có phương trình : x2y+3=xy+44 3x2y=50 (2) .

Từ (1) và (2) ta có hệ phương trình: xy=153x2y=50 .

Giải hệ phương trình ta được :x=20, y=5 ( TMĐK ).

Vậy diện tích của mảnh vườn là: S=xy=100 m2