Câu hỏi:
04/09/2022 567
Từ 6 điểm phân biệt thuộc đường thẳng ∆ và một điểm không thuộc đường thẳng ∆ ta có thể tạo được tất cả bao nhiêu tam giác?
Câu hỏi trong đề: 15 câu Trắc nghiệm Toán 10 Cánh Diều Tổ hợp có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta lấy 2 điểm trong 6 điểm trên đường thẳng ∆ kết hợp với 1 điểm không thuộc ∆ tạo ra một tam giác, có \(C_6^2 = 15\) cách lấy ra 2 điểm thuộc ∆
Vậy số tam giác được lập theo yêu cầu bài toán là: 15 tam giác.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Cách chọn 6 người trong đó có đúng 2 nữ vậy số nam chọn là 4
Số cách chọn là: \(C_6^2.C_8^4 = 1050\) cách.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Điều kiện n ≥ 2; n \( \in \) ℕ.
\[A_n^2 - 3C_n^2 = 15 - 5n\] \( \Leftrightarrow \frac{{n!}}{{\left( {n - 2} \right)!}} - 3.\frac{{n!}}{{\left( {n - 2} \right)!2!}} = 15 - 5n\)
\( \Leftrightarrow \left( {n - 1} \right)n - \frac{{3\left( {n - 1} \right)n}}{2} = 15 - 5n\)
\( \Leftrightarrow \) – n2 + 11n – 30 = 0
\( \Leftrightarrow \)n = 5 hoặc n = 6.
Vậy có 2 giá trị của n thoả mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.