Câu hỏi:
04/09/2022 140Cho đa giác đều n đỉnh, n \( \in \) ℕ; n ≥ 3. Tìm giá trị của n biết rằng đa giác đã cho có 135 đường chéo.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Số đường chéo là \(C_n^2 - n\).
+ Đa giác đã cho có 135 đường chéo nên \(C_n^2 - n = 135\).
\( \Leftrightarrow \) \(\frac{{n!}}{{\left( {n - 2} \right)!2!}} - n = 135\,\)
\( \Leftrightarrow \)n(n – 1) – 2n = 270
\( \Leftrightarrow \)n2 – 3n – 270 = 0
\( \Leftrightarrow \)n = 18 hoặc n = – 15
Kết hợp với điều kiện n = 18 thoả mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có 14 người gồm 8 nam và 6 nữ. Số cách chọn 6 người trong đó có đúng 2 nữ là
Câu 3:
Có bao nhiêu giá trị nguyên dương của n thỏa mãn \[A_n^2 - 3C_n^2 = 15 - 5n\]
Câu 4:
Trong không gian cho 2n điểm phân biệt n \( \in \) ℕ; n ≥ 3, trong đó không có \(3\) điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên mặt phẳng. Biết rằng có đúng 505 mặt phẳng phân biệt được tạo thành từ 2n điểm đã cho. Tìm n?
Câu 5:
Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?
Câu 6:
Câu 7:
Số tập con gồm ba phần tử khác nhau của một tập hợp gồm bảy phần tử khác nhau?
về câu hỏi!