Câu hỏi:

04/09/2022 140

Cho đa giác đều n đỉnh, n \( \in \) ℕ; n ≥ 3. Tìm giá trị của n biết rằng đa giác đã cho có 135 đường chéo.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Số đường chéo là \(C_n^2 - n\).

+ Đa giác đã cho có 135 đường chéo nên \(C_n^2 - n = 135\).

\( \Leftrightarrow \) \(\frac{{n!}}{{\left( {n - 2} \right)!2!}} - n = 135\,\)

\( \Leftrightarrow \)n(n – 1) – 2n = 270

\( \Leftrightarrow \)n2 – 3n – 270 = 0

\( \Leftrightarrow \)n = 18 hoặc n = – 15

Kết hợp với điều kiện n = 18 thoả mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

14 người gồm 8 nam và 6 nữ. Số cách chọn 6 người trong đó có đúng 2 nữ là

Xem đáp án » 04/09/2022 5,241

Câu 2:

Nếu \[C_n^k = 10\]\[A_n^k = 60\]. Thì k bằng

Xem đáp án » 04/09/2022 2,809

Câu 3:

Có bao nhiêu giá trị nguyên dương của n thỏa mãn \[A_n^2 - 3C_n^2 = 15 - 5n\]

Xem đáp án » 04/09/2022 2,160

Câu 4:

Trong không gian cho 2n điểm phân biệt n \( \in \) ℕ; n ≥ 3, trong đó không có \(3\) điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên mặt phẳng. Biết rằng có đúng 505 mặt phẳng phân biệt được tạo thành từ 2n điểm đã cho. Tìm n?

Xem đáp án » 04/09/2022 958

Câu 5:

Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

Xem đáp án » 04/09/2022 865

Câu 6:

Tên 15 quả bóng khác nhau để vào trong hộp. Có bao nhiêu cách chọn ra 4 quả bóng.

Xem đáp án » 04/09/2022 776

Câu 7:

Số tập con gồm ba phần tử khác nhau của một tập hợp gồm bảy phần tử khác nhau?

Xem đáp án » 04/09/2022 754

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL