Câu hỏi:

12/07/2024 6,789

Với các số thực a và b thỏa mãn a2+b2=2. Tìm giá trị nhỏ nhất của biểu thức P=3a+b+ab

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có :

a+b2=a2+b2+2ab=2+2abab=a+b222=12a+b21

Khi đó ta có: P=3a+b+ab=3a+b+12a+b21

P=12a+b2+6a+b+9112P=12a+b+32112

Áp dụng bất đẳng thức Bunhiacopxki ta có :

a+b22a2+b2=2.2=42a+b2

1a+b+35512a+b+321127Pmin=5

Dấu "="xảy ra khi và chỉ khi a2+b2=2a=ba+b=2a=b=1

Vậy giá trị nhỏ nhất của P bằng 5a=b=1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Xét phương trình hoành độ giao điểm của (d) và (P)

x2=2x+m2x22xm+2=0*

(d) cắt (P) tại hai điểm phân biệt có hoành độ x1,x2Phương trình (*) phải có 2 nghiệm phân biệt x1,x2

Δ'>01+m2>0m1>0m>1

Khi đó, theo định lý Vi-et ta có : x1+x2=2x1x1=m+2. Theo giả thiết:

x1x2=2x1x22=4x12+x222x1x2=4x1+x224x1x2=444m+2=4m=2(tm)

Vậy m = 2

Lời giải

b) Thùng nước hình trụ có chiều cao h = 1,6 cm và bán kính đáy R = 0,5 m

Diện tích bề mặt được sơn của thùng nước : 2πRh=2.3,14.0,5.1,6=5,024m2

Vậy diện tích bề mặt được sơn của thùng nước là 5,024m2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP