Câu hỏi:
12/07/2024 3,063Cho tập hợp A gồm n phần tử (n ∈ ℕ*). Mỗi hoán vị của n phần tử đó là:
A. Một kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A.
B. Tất cả kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A.
C. Một số được tính bằng n(n – 1). … .2.1.
D. Một số được tính bằng n!.
Câu hỏi trong đề: Giải SBT Toán 10 Bài 2. Hoán vị. Chỉnh hợp có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là A
Cho tập hợp A gồm n phần tử (n ∈ ℕ*).
Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử đó.
Vậy ta chọn phương án A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Giả sử các học sinh trong tổ được đánh số thứ tự từ 1 đến 8. Vì số học sinh nam và số học sinh nữ bằng nhau nên có hai trường hợp sau:
Trường hợp 1: Học sinh nam đứng đầu hàng.
Khi đó các học sinh nam có số thứ tự là số lẻ, còn các học sinh nữ có số thứ tự là số chẵn.
Như vậy, thứ tự của các học sinh nam và các học sinh nữ được cố định, chỉ thay đổi thứ tự giữa các học sinh nam, hoặc giữa các học sinh nữ.
Sắp xếp 4 học sinh nam thì có 4! (cách xếp).
Sắp xếp 4 học sinh nữ thì có 4! (cách xếp).
Khi đó, số cách xếp thứ tự các học sinh trong tổ trong trường hợp học sinh nam đứng đầu hàng là: 4!.4! = 576 (cách xếp).
Trường hợp 2: Học sinh nữ đứng đầu hàng.
Tương tự như trường hợp 1, số cách xếp thứ tự các học sinh trong tổ trong trường hợp học sinh nữ đứng đầu hàng là: 4!.4! = 576 (cách xếp).
Vậy số cách xếp thứ tự các học sinh trong tổ sao cho nam, nữ đứng xen kẽ nhau là:
576 + 576 = 1152 (cách xếp).
Lời giải
Lời giải
Xét số tự nhiên có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \).
Trường hợp 1: a1 có thể bằng 0 hoặc khác 0.
Với a1 có thể bằng 0 hoặc khác 0, mỗi số có dạng trên là một chỉnh hợp chập 6 của 10 chữ số đã cho.
Do đó, số các số có thể lập được trong trường hợp 1 là: \(A_{10}^6\) (số).
Trường hợp 2: a1 = 0.
Vì a1 = 0 cố định nên 5 chữ số sau a1 đều khác 0 và chỉ có 5 chữ số đó thay đổi.
Suy ra, mỗi số có dạng \(\overline {0{a_2}{a_3}{a_4}{a_5}{a_6}} \) là một chỉnh hợp chập 5 của 9 chữ số khác 0 đã cho.
Do đó, số các số có thể lập được trong trường hợp 2 là: \(A_9^5\) (số).
Vậy số các số tự nhiên có 6 chữ số đôi một khác nhau có thể lập được là:
\(A_{10}^6 - A_9^5 = 136080\) (số).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)