Câu hỏi:
12/07/2024 1,949Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải
Cách 1:
Chọn 18 học sinh ngồi ở hàng đầu trong số 40 học sinh là một chỉnh hợp chập 18 của 40 học sinh đó.
Như vậy, số cách xếp vị trí 18 học sinh ở hàng đầu là: \(A_{40}^{18}\) (cách xếp).
Sau khi xếp xong 18 học sinh ở hàng đầu thì còn lại 22 học sinh.
Sắp xếp 22 học sinh ở hàng sau là một hoán vị của 22 phần tử.
Như vậy, số cách xếp vị trí của 22 học sinh ở hàng sau là: 22! (cách xếp).
Vậy số cách xếp vị trí chụp ảnh là: \(A_{40}^{18}.22!\) (cách xếp).
Cách 2:
Vì ta có thể xếp vị trí của 40 học sinh rồi chia 18 học sinh ngồi ở hàng đầu và 22 học sinh đứng ở hàng sau nên số cách xếp vị trí chụp ảnh có thể tính bằng: 40!.
Vậy số cách xếp vị trí chụp ảnh là: 40! (cách xếp).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ta lập được bao nhiêu số tự nhiên:
Gồm 6 chữ số đôi một khác nhau?
Câu 2:
Một tổ có 8 học sinh gồm 4 nữ và 4 nam. Có bao nhiêu cách xếp các học sinh trong tổ:
Thành một hàng dọc sao cho nam, nữ đứng xen kẽ nhau?
Câu 3:
Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9, ta lập được bao nhiêu số tự nhiên:
Gồm 9 chữ số đôi một khác nhau?
Câu 4:
Câu 5:
Cho tập hợp A gồm n phần tử (n ∈ ℕ*). Mỗi hoán vị của n phần tử đó là:
A. Một kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A.
B. Tất cả kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A.
C. Một số được tính bằng n(n – 1). … .2.1.
D. Một số được tính bằng n!.
Câu 6:
Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?
A. \(A_n^k = n\left( {n - 1} \right)...\left( {n - k + 1} \right)\).
B. Pn = n(n – 1). … .2.1.
C. Pn = n!.
D. \(A_n^k = \frac{{n!}}{{k!}}\).
về câu hỏi!