Câu hỏi:

07/09/2022 2,681

Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

A. \(C_n^k = \frac{{A_n^k}}{{k!}}\).

B. \(C_n^k = C_n^{n - k}\).

C. \(C_n^k = \frac{{A_n^k}}{{\left( {n - k} \right)!}}\).

D. \(C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là B

Cho k, n là các số nguyên dương, k ≤ n.

Ta có \(C_n^k = \frac{{A_n^k}}{{k!}} = C_n^k = \frac{{n!}}{{k!\left( {n - k} \right)!}}\).

Do đó phương án A, D đúng.

Theo tính chất của các số \(C_n^k\), ta có \(C_n^k = C_n^{n - k}\).

Do đó phương án B đúng.

Suy ra phương án C sai.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Số đoạn thẳng có 2 đầu mút là 2 trong n điểm đã cho là: \(C_n^2 = \frac{{n!}}{{2!\left( {n - 2} \right)!}}\).

Theo đề, ta có số đoạn thẳng có hai đầu mút là 2 trong n điểm đã cho bằng 78.

Tức là, \[\frac{{n!}}{{2!\left( {n - 2} \right)!}} = 78\].

Suy ra \[\frac{{\left( {n - 2} \right)!.\left( {n - 1} \right).n}}{{2.\left( {n - 2} \right)!}} = 78\].

Khi đó \[\frac{{\left( {n - 1} \right).n}}{2} = 78\].

Do đó n2 – n = 156.

Vì vậy n2 – n – 156 = 0.

Suy ra n = 13 hoặc n = –12.

Vì n > 1 nên ta nhận n = 13.

Vậy n = 13 thỏa mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP