Câu hỏi:
13/07/2024 4,245
Cho hàm số ( m là tham số)
a).Tìm m để hàm số đã cho là hàm số bậc nhất đồng biến trên
.
b).Chứng minh rằng với mọi giá trị của m thì đồ thị hàm số đã cho luôn cắt parabol tại hai điểm phân biệt. Gọi , là hoành độ các giao điểm, tìm m sao cho .
c).Gọi đồ thị hàm số đã cho là đường thẳng (d). Chứng minh khoảng cách từ điểm O(0; 0) đến (d) không lớn hơn .
Cho hàm số ( m là tham số)
a).Tìm m để hàm số đã cho là hàm số bậc nhất đồng biến trên .
b).Chứng minh rằng với mọi giá trị của m thì đồ thị hàm số đã cho luôn cắt parabol tại hai điểm phân biệt. Gọi , là hoành độ các giao điểm, tìm m sao cho .
c).Gọi đồ thị hàm số đã cho là đường thẳng (d). Chứng minh khoảng cách từ điểm O(0; 0) đến (d) không lớn hơn .
Câu hỏi trong đề: Bộ đề Ôn tập Toán 9 thi vào 10 năm 2020 có đáp án !!
Quảng cáo
Trả lời:
a)
đồng biến trên .
Vậy m > 4 thì hàm số đồng biến trên .
b)
.
Phương trình hoành độ giao điểm của (d), (P):
, Có
Có
Do có
Suy ra (d) cắt luôn cắt (P) tại hai điểm phân biệt .
Có
, mà
.
Vậy m = 5, m = 2 thỏa yêu cầu bài
c)
*Trường hơp 1: Xét , thì (d): y = 8, (d) song song trục Ox, (d) cắt trục Oy tại B(0; 8)
Có khoảng cách từ O đến đường thẳng (d) là OB = 8
Gọi H là hình chiếu của O lên đường thẳng (d).
vuông tại O có , Có OH.AB = OA.OB
Giả sử
(sai)
Vậy .
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)
Ta có bảng giá trị sau
x |
-2 |
-1 |
0 |
1 |
2 |
y |
2 |
|
0 |
|
2 |
Đồ thị hàm số là đường cong đi qua các điểm (-2;2); (-1; ); (0;0); (1; ); (2;2) và nhận trục Oy làm trục đối xứng.

b) Xét phương trình hoành độ giao điểm của đồ thị hàm số (P) và đường thẳng (d):
Với x = 0 => y = 0 ta có giao điểm O(0;0)
Với x = 2 => y = 2 ta có giao điểm A(2;2)
Vậy giao điểm của đồ thị hàm số (P) và đường thẳng (d) là O(0;0); A(2;2)
Lời giải
Bảng sau cho một số giá trị tương ứng của x và y

Vẽ đồ thị:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.