Câu hỏi:

19/08/2025 2,592 Lưu

ho phương trình: 2x2 – 3x – 8 = 0 có hai nghiệm x1; x2.

a) Không giải phương trình, hãy tính S = x1 + x2 và P = x1x2.

b) Tính:  x1x2+x2x1.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có phương trình 2x2 – 3x – 8 = 0 với a = 2, b = −3, c = −8.

Theo định lý Vi – ét, ta có:

S = x1 + x2ba= 32.

P = x1x2 = ca-82 = −4.

b) Ta có:  x1x2+x2x1 =  x12+x22x1.x2

(x1+x2)22x1x2x1.x2

3222.(4)32.(4) 4124.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho ∆ABC nhọn (AB < AC) nội tiếp đường tròn (O), có các đường cao BE và CF cắt nhau tại H. Vẽ đường kính AK của đường tròn (O). a) Chứng minh tứ giác BFEC nội tiếp đường tròn. b) Gọi D là giao điểm của AH và BC. Chứng minh AE.AC = AH.AD. c) Gọi M là hình chiếu của D lên BE. Qua M vẽ đường thẳng vuông góc với AK, đường thẳng này cắt CF tại N. Chứng minh: AK  EF và tứ giác HNDM nội tiếp. (ảnh 1)

a) Ta có: BFC^ = 90° (CF là đường cao)

 BEC^= 90° (BE là đường cao)

Xét tứ giác BFEC có  BFC^=BEC^= 90°

Mà 2 đỉnh E, F kề nhau cùng nhìn cạnh BC dưới hai góc bằng nhau.

Vậy tứ giác BFEC nội tiếp.

b) Ta có BE, CF là đường cao trong ∆ABC và BE, CF cắt nhau tại H.

Khi đó, H là trực tâm ∆ABC nên AD là đường cao.

Do đó  ADC^= 90°.

Xét ∆AHE và ∆ACD có:

 DAC^ là góc chung.

 AEH^=ADC^(= 90°).

Do đó ∆AHE   ∆ACD (g.g).

Suy ra  AHAE=ACAD (cặp cạnh tương ứng).

Vậy AE.AC = AH.AD (đpcm).

c) Gọi Ax là tiếp tuyến đường tròn tâm O.

Ta có:  ABC^=xAC^(cùng chắn cung AC).

 FBC^+FEC^=180°(tứ giác BFEC nội tiếp).

Hay  ABC^+FEC^=180°

Mà  CEF^+AEF^=180°

Suy ra ABC^=AEF^mà  ABC^=xAC^

Do đó  xAC^=AEF^ Þ EF // Ax

Mà Ax ^ OA(tiếp tuyến đường tròn tâm O) hay Ax ^ AK (AK là đường kính)

Suy ra EF ^ AK.

Ta có: AK ^ EF (chứng minh trên) mà MN ^ AK Þ EF // MN

Suy ra  FEM^=EMN^ mà  FEM^=FCB^ (cùng chắn cung BF).

Nên  EMN^=FCB^

Do đó  NMD^=NHD^.

Vậy HNDM nội tiếp (cùng nhìn cạnh ND dưới hai góc bằng nhau).

Lời giải

Gọi x (học sinh), y (học sinh) lần lượt là số học sinh dự thi của trường A và trường B (x, y > 0).

Trường A có tỉ lệ đậu là 80%, trường B có tỉ lệ đậu là 90% và có 84% tổng thí sinh dự thi của hai trường thi đậu, ta có phương trình:

80%x + 90%y = 84%(x + y)

Û 0,8x + 0,9y = 0,84x + 0,84y

Û −0,04x + 0,06y = 0 (1)

Theo đề bài, tất cả 630 học sinh đậu vào lớp 10 công lập, đạt tỉ lệ 84% tổng số học sinh dự thi của hai trường, nên ta có phương trình:

84%(x + y) = 630

Û 0,84x + 0,84y = 630 (2)

Từ (1) và (2) ta lập được hệ phương trình:

 0,04x+0,06y=00,84x+0,84y=630

 2x3y=0x+y=750

 2x3.(750x)=0y=750x

 2x3.(750x)=0y=750x

 2x2250+3x=0y=750x

 5x=2250y=750x

 x=450  (TM)y=300  (TM)

Vậy trường A có 450 học sinh dự thi và trường B có 300 học sinh dự thi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP