Câu hỏi:

11/07/2024 969

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng AM=12BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng  . (ảnh 1)

* Tìm cách giải. Để chứng minh AM=12BC ta cần chứng minh BC=2.AM. Về mặt suy luận, ta cần dựng một đoạn thẳng bằng 2.AM  rồi chứng minh đoạn thẳng đó bằng BC.

* Trình bày lời giải.

Trên tia đối của tia MA lấy điểm D sao cho MD=MA. Suy ra AD=2.AM

ΔAMB ΔDMC AM=MD; M1^=M2^; MB=MC nên ΔAMB=ΔDMC.

Suy ra AB=DC ; A1^=D1^nên AB//CDDCAC.

ΔABC ΔCDA AB=DC; BAC^=DCA^=90°, AC chung suy ra ΔABC=ΔCDAc.g.c

BC=DABC=2.AM hay AM=12BC.

* Nhận xét. Bài này là một tính chất thú vị của tam giác vuông, thường được sử dụng trong những bài nối trung điểm của cạnh huyền với đỉnh góc vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vẽ bên.  Biết rằng AB//CD ; AD//BC. Chứng minh rằng:  AB=CD, AD=BC . (ảnh 1)

AB//CDABD^=CDB^ (cặp so le trong)

AD//BCADB^=CBD^ (cặp so le trong)

ΔABD ΔCDB ABD^=CDB^ , BD là cạnh chung, ADB^=CBD^.

Suy ra ΔABD=ΔCDBg.c.gAB=CD, AD=BC.

Lời giải

Hướng dẫn:

Cho  . Gọi D; E theo thứ tự là trung điểm của AB, AC. Trên tia đối của tia ED lấy điểm F sao cho  . Chứng minh: (ảnh 1)

a) Ta dễ chứng minh được ΔADE=ΔCFEc.g.c

Suy ra AD=CFBD=CF

A ^=FCE^, mà hai góc ở vị trí so le trong nên CF//AB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP