Câu hỏi:

13/07/2024 2,087

Cho tam giác ABC nhọn. Kẻ BDACDAC, CEABEAB. Trên tia đối của tia BD lấy điểm H sao cho BH=AC. Trên tia đối của tia CE lấy điểm K sao cho CK=AB. Chứng minh:

a, ABH^=ACK^

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn:

Cho tam giác ABC nhọn. Kẻ BD vuông góc AC(D thouộc AC), CE vuôbg góc AB(E thuộc AB). Trên tia đối của tia BD lấy điểm H (ảnh 1)

a) ΔABD có 

ADB^=90°ABD^+BAC^=90°     1

    ΔACE có AEC^=90°ACE^+BAC^=90°     2

Từ (1) và (2), suy ra: ABD^=ACE^ do đó ABH^=ACK^.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vẽ bên.  Biết rằng AB//CD ; AD//BC. Chứng minh rằng:  AB=CD, AD=BC . (ảnh 1)

AB//CDABD^=CDB^ (cặp so le trong)

AD//BCADB^=CBD^ (cặp so le trong)

ΔABD ΔCDB ABD^=CDB^ , BD là cạnh chung, ADB^=CBD^.

Suy ra ΔABD=ΔCDBg.c.gAB=CD, AD=BC.

Lời giải

Hướng dẫn:

Cho  . Gọi D; E theo thứ tự là trung điểm của AB, AC. Trên tia đối của tia ED lấy điểm F sao cho  . Chứng minh: (ảnh 1)

a) Ta dễ chứng minh được ΔADE=ΔCFEc.g.c

Suy ra AD=CFBD=CF

A ^=FCE^, mà hai góc ở vị trí so le trong nên CF//AB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP