Câu hỏi:

28/09/2022 2,005

Cho tam giác ABCB^+C^=60°, tia phân giác của BAC^ cắt BC tại D. Trên AD lấy điểm O, trên tia đối của tia AC lấy điểm M sao cho ABM^=ABO^. Trên tia đối của tia AB lấy điểm N sao cho ACN^=ACO^. Chứng minh rằng AM=AN.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn:

Cho tam giác ABC có góc B + góc C = 60 độ , tia phân giác của góc BAC cắt BC tại D. Trên AD lấy điểm O, trên tia đối của tia AC (ảnh 1)

ΔABC B^+C^=60°BAC^=120°.

Ta có AD là tia phân giác BAC^BAD^=CAD^=12BAC^=60°.

ΔABO ΔABM BAO^=BAM^=60°; AB chung; ABM^=ABO^

ΔABO=ΔABMg.c.gAM=AO   1

Chứng minh tương tự, ta có: ΔACO=ΔACNg.c.gAN=AO   2

Từ (1) và (2), suy ra: AM=AN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vẽ bên.  Biết rằng AB//CD ; AD//BC. Chứng minh rằng:  AB=CD, AD=BC . (ảnh 1)

AB//CDABD^=CDB^ (cặp so le trong)

AD//BCADB^=CBD^ (cặp so le trong)

ΔABD ΔCDB ABD^=CDB^ , BD là cạnh chung, ADB^=CBD^.

Suy ra ΔABD=ΔCDBg.c.gAB=CD, AD=BC.

Lời giải

Hướng dẫn:

Cho  . Gọi D; E theo thứ tự là trung điểm của AB, AC. Trên tia đối của tia ED lấy điểm F sao cho  . Chứng minh: (ảnh 1)

a) Ta dễ chứng minh được ΔADE=ΔCFEc.g.c

Suy ra AD=CFBD=CF

A ^=FCE^, mà hai góc ở vị trí so le trong nên CF//AB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP