Câu hỏi:

30/09/2022 8,416

Cho parabol (P): y=x2  và đường thẳng y=2(m1)x+m2+2m (m là tham số, m).

a) Xác định tất cả các giá trị của m để đường thẳng (d) đi qua điểm I (1; 3).

b) Tìm m để parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt A, B. Gọi x1,x2 là hoành độ hai điểm A, B; tìm m sao cho x12+x22+6x1x2=2020.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

Để đường thẳng (d): y=2(m1)x+m2+2m đi qua điểm I (1;3) thì x = 1; y = 3 thỏa mãn phương trình đường thẳng (d) nên ta có:

3=2(m1).1+m2+2mm2+2m+2m2=3m2+4m5=0m21+4m4=0m1m+1+4m1=0m1m+5=0m1=0m+5=0m=1m=5

Vậy với m = 1 hoặc m = - 5 thì đường thẳng (d) đi qua điểm I(1;3)

b)

(P): y=x2  và (d): y=2(m1)x+m2+2m (m1)

Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình:

x2=2(m1)x+m2+2m(1)x22(m1)x(m2+2m)=0

Δ'=(m1)2+m2+2m=2m2+1>0 với mọi m

       Phương trình (1) luôn có hai nghiệm phân biệt với mọi m

Khi đó theo hệ thức Vi-ét: x1+x2=2m1x1x2=(m2+2m)(2)

Theo bài ra, ta có: x12+x22+6x1x2=2020

x1+x222x1x2+6x1x2=2020x1+x22+4x1x2=2020(3)

Thay (2) vào (3) ta có: 

2(m1)24(m2+2m)=20204m24m+44m28m=202012m=2016m=168

Vậy m = 168 thỏa mãn bài.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) 

Ta có bảng giá trị sau        

x

-2

-1

0

1

2

y

2

0

2

Đồ thị hàm số y=12x2 là đường cong đi qua các điểm (-2;2); (-1; 12); (0;0); (1; 12); (2;2) và nhận trục Oy làm trục đối xứng.

a) Vẽ đồ thị (P) của hàm số y = 1/2x^2  b)Tìm giao điểm của đồ thị hàm số (P) với (ảnh 1)

b) Xét phương trình hoành độ giao điểm của đồ thị hàm số (P) và đường thẳng (d): 12x2=xx=0;x=2

Với x = 0 => y = 0 ta có giao điểm O(0;0)

Với x = 2 => y = 2 ta có giao điểm A(2;2)

Vậy giao điểm của đồ thị hàm số (P) và đường thẳng (d) là O(0;0); A(2;2)

Lời giải

Bảng sau cho một số giá trị tương ứng của x và y

Vẽ đồ thị của hàm số y = x^2. (ảnh 1)

Vẽ đồ thị:

Vẽ đồ thị của hàm số y = x^2. (ảnh 2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay