Câu hỏi:

30/09/2022 11,730

Cho Parabol (P):y=12x2 và đường thẳng (d): y = x + m - 1 ( là tham số)

1) Vẽ đồ thị (P)

2) Gọi AxA;yA,BxB;yB là hai giao điểm phân biệt của (d) và (P). Tìm tất cả các giá trị của tham số m để xA>0 và xB>0

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1) Ta có bảng giá trị

Cho Parabol (P): y = 1/2x^2 và đường thẳng (d): y = x + m - 1 ( là tham số) (ảnh 1)

Vậy đồ thị hàm số (P):y=12x2 là đường cong đi qua các điểm như bảng

Đồ thị hàm số (P):y=12x2

Cho Parabol (P): y = 1/2x^2 và đường thẳng (d): y = x + m - 1 ( là tham số) (ảnh 2)

2) 

Ta có phương trình hoành độ giao điểm của hai đồ thị hàm số (d) và (P) là:

12x2=x+m1x22x2m+2=0 (*)

Theo đề bài ta có: (d) cắt (P) tại hai điểm AxA;yA,BxB;yB phân biệt 

 (*) có hai nghiệm phân biệt Δ'>0

1(2m+2)>01+2m2>02m>1m>12

Vậy với m>12 thì phương trình (*) có hai nghiệm xA,xB phân biệt.

Áp dụng hệ thức Vi-et ta có: xA+xB=2xA.xB=2m+2

Theo đề bài ta có: xA>0xB>0xA+xB>0xAxB>02>0m2m+2>02m>2m<1

Kết hợp các điều kiện của m ta được 12<m<1.

Vậy 12<m<1 thoả mãn bài toán.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) 

Ta có bảng giá trị sau        

x

-2

-1

0

1

2

y

2

0

2

Đồ thị hàm số y=12x2 là đường cong đi qua các điểm (-2;2); (-1; 12); (0;0); (1; 12); (2;2) và nhận trục Oy làm trục đối xứng.

a) Vẽ đồ thị (P) của hàm số y = 1/2x^2  b)Tìm giao điểm của đồ thị hàm số (P) với (ảnh 1)

b) Xét phương trình hoành độ giao điểm của đồ thị hàm số (P) và đường thẳng (d): 12x2=xx=0;x=2

Với x = 0 => y = 0 ta có giao điểm O(0;0)

Với x = 2 => y = 2 ta có giao điểm A(2;2)

Vậy giao điểm của đồ thị hàm số (P) và đường thẳng (d) là O(0;0); A(2;2)

Lời giải

Bảng sau cho một số giá trị tương ứng của x và y

Vẽ đồ thị của hàm số y = x^2. (ảnh 1)

Vẽ đồ thị:

Vẽ đồ thị của hàm số y = x^2. (ảnh 2)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay