Câu hỏi:

13/07/2024 6,684

Tung ba đồng xu cân đối và đồng chất. Xác định biến cố đối của mỗi biến cố sau và tính xác suất của nó.

a) Xuất hiện ba mặt sấp;

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Gọi A là biến cố “Xuất hiện ba mặt sấp”.

Biến cố A không xảy ra khi không xuất hiện ba mặt sấp, nghĩa là xuất hiện ít nhất một mặt ngửa.

Do đó, biến cố đối của biến cố A là A¯: “Xuất hiện ít nhất một mặt ngửa”.

Khi tung một đồng xu cân đối và đồng chất thì có 2 khả năng có thể là xuất hiện mặt sấp (S) hoặc xuất hiện mặt ngửa (N).

Khi đó tung ba đồng xu cân đối và đồng chất thì có 2.2.2 = 8 khả năng.

Số phần tử của không gian mẫu là: n(Ω) = 8.

A là biến cố “Xuất hiện ba mặt sấp” A = {SSS}  n(A) = 1.

P(A) = 18.

P(A¯) = 1 P(A) = 1 – 18 = 78.

Vậy xác suất của biến cố: “Xuất hiện ba mặt sấp” là A¯; xác suất của biến cố: “Xuất hiện ít nhất một mặt ngửa” là 78.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong hộp có 3 bi xanh, 4 bi đỏ và 5 bi vàng có kích thước và khối lượng như nhau. Lấy ngẫu nhiên từ trong hộp 4 viên bi. Tính xác suất để trong 4 bi lấy ra:

a) Có ít nhất 1 bi xanh.

Xem đáp án » 13/07/2024 19,466

Câu 2:

Một hộp có 10 tấm thẻ giống nhau được đánh số lần lượt từ 1 đến 10. Chọn ra ngẫu nhiên cùng một lúc 3 thẻ. Tính xác suất biến cố tích các số ghi trên 3 thẻ đó là số chẵn.

Xem đáp án » 13/07/2024 11,059

Câu 3:

Lấy ngẫu nhiên đồng thời 2 viên bi từ một hộp có chứa 5 bi xanh và 5 bi đỏ có cùng kích thước và trọng lượng. Biến cố lấy được 2 viên bi cùng màu hay 2 viên bi khác màu có khả năng xảy ra cao hơn? Trong bài này ta sẽ tìm hiểu công thức tính xác suất để có thể so sánh được khả năng xảy ra của hai biến cố trên.

Xem đáp án » 13/07/2024 9,344

Câu 4:

Gieo đồng thời ba con xúc xắc cân đối và đồng nhất. Tính xác suất của các biến cố:

a) “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc chia hết cho 3”;

Xem đáp án » 13/07/2024 7,987

Câu 5:

Hộp thứ nhất đựng 1 thẻ xanh, 1 thẻ đỏ và 1 thẻ vàng. Hộp thứ hai đựng 1 thẻ xanh và 1 thẻ đỏ. Các tấm thẻ có kích thước và khối lượng như nhau. Lần lượt lấy ra ngẫu nhiên từ mỗi hộp một tấm thẻ.

a) Sử dụng sơ đồ hình cây, liệt kê tất cả các kết quả có thể xảy ra.

Xem đáp án » 13/07/2024 7,044

Câu 6:

Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất của mỗi biến cố sau:

a) “Tổng số chấm nhỏ hơn 10”;

Xem đáp án » 13/07/2024 7,014

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn