Câu hỏi:

19/10/2022 902

Cho f(x) = ax2 + bx + c (a ≠ 0) có đồ thị đi qua ba điểm (0; 1); (1; –2); (3; 5). Kết luận nào sau đây đúng?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Xét f(x) = ax2 + bx + c (a ≠ 0):

Ta có đồ thị đi qua điểm (0; 1) nên f(0) = 1.

Khi đó a.02 + b.0 + c = 1.

Vì vậy c = 1.

Ta có đồ thị đi qua điểm (1; –2) nên f(1) = –2.

Khi đó a.12 + b.1 + c = –2.

Vì vậy a + b + c = –2 (1)

Thế c = 1 vào (1) ta được a + b + 1 = –2.

Do đó a = –b – 3.

Ta có đồ thị đi qua điểm (3; 5) nên f(3) = 5.

Khi đó a.32 + b.3 + c = 5.

Vì vậy 9a + 3b + c = 5 (2)

Thế c = 1 và a = –b – 3 vào (2) ta được 9(–b – 3) + 3b + 1 = 0.

Suy ra –9b – 27 + 3b + 1 = 0.

Do đó –6b – 26 = 0.

Vì vậy b=133.

Với b=133, ta có a = –b – 3 = 1333=43 > 0.

Vậy ta có tam thức bậc hai fx=43x2133x+1.

Ta có ∆ = 13324.43.1=1219 > 0.

Suy ra f(x) có 2 nghiệm phân biệt là:

x1=133+12192.43=3;  x2=13312192.43=14

Ta có bảng xét dấu của f(x) như sau:

Cho f(x) = ax^2 + bx + c (a khác 0) có đồ thị đi qua ba điểm (0; 1); (1; –2); (3; 5) (ảnh 1)

Vậy f(x) âm trong khoảng 14;3 và f(x) dương trong hai khoảng ;14 và (3; +∞).

Ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho f(x) = x2 + 2(m – 1)x + m2 – 3m + 4. Giá trị của m để f(x) không âm với mọi giá trị của x là:

Xem đáp án » 19/10/2022 9,564

Câu 2:

Cho f(x) = mx2 + 2(m + 1)x + m – 2. Với giá trị nào của tham số m thì f(x) là tam thức bậc hai và f(x) > 0 có nghiệm?

Xem đáp án » 19/10/2022 1,892

Câu 3:

Cho f(x) = (m – 3)x2 + (m + 3)x – (m + 1). Để f(x) là một tam thức bậc hai và có nghiệm kép thì:

Xem đáp án » 19/10/2022 657

Câu 4:

Cho f(x) = mx2 – 2mx + m – 1. Giá trị nào của m để f(x) ≥ 0 vô nghiệm?

Xem đáp án » 19/10/2022 620

Bình luận


Bình luận