Câu hỏi:

19/10/2022 1,068 Lưu

Cho f(x) = (m – 3)x2 + (m + 3)x – (m + 1). Để f(x) là một tam thức bậc hai và có nghiệm kép thì:

A. m = 1;              

B. m = –1;            

C. m=35;           

D. Cả A và C đều đúng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Xét f(x) = (m – 3)x2 + (m + 3)x – (m + 1).

Ta có:

∆ = (m + 3)2 – 4.(m – 3).[–(m + 1)]

= m2 + 6m + 9 + 4.(m – 3)(m + 1)

= m2 + 6m + 9 + 4(m2 – 2m – 3)

= 5m2 – 2m – 3.

Ta có f(x) là một tam thức bậc hai và có nghiệm kép khi và chỉ khi a ≠ 0 và ∆ = 0.

m305m22m3=0m3m15m+3=0

m3m1=05m+3=0m3m=1m=35m=1m=35

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. m < 3;              

B. m ≥ 3;              

C. m ≤ –3;            

D. m ≤ 3.

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Xét f(x) = x2 + 2(m – 1)x + m2 – 3m + 4.

Ta có:

∆’ = (m – 1)2 – 1.(m2 – 3m + 4)

= m2 – 2m + 1 – m2 + 3m – 4

= m – 3.

Yêu cầu bài toán Tìm m để f(x) ≥ 0 với mọi giá trị của x.

Ta có f(x) ≥ 0, với mọi giá trị của x.

a > 0 và ∆’ 0.

1 > 0 (luôn đúng) và m – 3 0.

m 3.

Vậy m 3 thỏa mãn yêu cầu bài toán.

Ta chọn phương án D.

Câu 2

A. m ℝ;             

B. m;14;           

C. m 14;+\0;            

D. m ℝ \ {0}.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

f(x) = mx2 + 2(m + 1)x + m – 2 là tam thức bậc hai a ≠ 0 m ≠ 0.

Ta có:

∆’ = (m + 1)2 – m(m – 2)

= m2 + 2m + 1 – m2 + 2m

= 4m + 1.

Trường hợp 1: a > 0 m > 0.

Khi đó f(x) > 0 có nghiệm với mọi x.

Do đó m > 0 thỏa mãn yêu cầu đề bài.

Trường hợp 2: a < 0 m < 0.

Khi đó để f(x) > 0 có nghiệm thì ∆ > 0.

4m + 1 > 0.

m>14.

Kết hợp m < 0 ta có 14<m<0.

Kết hợp cả 2 trường hợp, ta thu được kết quả m 14;+\0.

Vậy m 14;+\0 thỏa mãn yêu cầu bài toán.

Ta chọn phương án C.

Câu 3

A. m 0;   

B. m 0;              

C. m < 0;              

D. m > 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. f(x) âm trong khoảng 14;3;

B. f(x) âm trong khoảng ;14;                

C. f(x) âm trong khoảng (3; +∞);                  

D. f(x) dương trong khoảng 14;3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP