Câu hỏi:

19/10/2022 389

Cho f(x) = –x2 – 4x + 5. Có bao nhiêu giá trị nguyên của x thỏa mãn f(x) ≥ 0?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Tam thức bậc hai f(x) = –x2 – 4x + 5 có ∆’ = (–2)2 – (–1).5 = 9 > 0.

Suy ra f(x) có hai nghiệm phân biệt là:

x1=2+91=5;  x2=291=1.

Ta lại có a = –1 < 0.

Do đó ta có:

f(x) âm trên hai khoảng (–∞; –5) và (1; +∞);

f(x) dương trên khoảng (–5; 1);

f(x) = 0 khi x = –5 hoặc x = 1.

Vì vậy bất phương trình f(x) ≥ 0 có tập nghiệm là [–5; 1].

Trên đoạn [–5; 1], ta thấy có 7 giá trị nguyên là: –5; –4; –3; –2; –1; 0; 1.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tập nghiệm của bất phương trình x2 – 3x + 2 < 0 là:

Xem đáp án » 19/10/2022 28,082

Câu 2:

Tập nghiệm của bất phương trình x2 + 9 > 6x là:

Xem đáp án » 19/10/2022 17,301

Câu 3:

Cho hàm số bậc hai f(x) có đồ thị như hình bên.

Cho hàm số bậc hai f(x) có đồ thị như hình bên.   Tập nghiệm của bất phương trình (ảnh 1)

Tập nghiệm của bất phương trình f(x) ≥ 0 là:

Xem đáp án » 19/10/2022 794

Câu 4:

Tập xác định của hàm số y=x2+2x+3 là:

Xem đáp án » 19/10/2022 503

Câu 5:

Tập nghiệm của bất phương trình (2x – 5)(x + 2) ≥ x2 – 4 là:

Xem đáp án » 19/10/2022 397

Câu 6:

Cho bất phương trình (m – 2)x2 + 2(2m – 3)x + 5m – 6 ≥ 0. Để x = 6 là một nghiệm của bất phương trình trên thì m nhận giá trị nào trong các giá trị sau đây?

Xem đáp án » 19/10/2022 312

Bình luận


Bình luận