Câu hỏi:
19/10/2022 304Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Phương trình f(x) = (m2 – m – 6)x2 – 2(m + 2)x – 4 = 0.
+) Trường hợp 1: a = 0 ⇔ m2 – m – 6 = 0
⇔ m = 3 hoặc m = –2.
• Với m = 3, ta có 0.x2 – 2.(3 + 2)x – 4 = 0
⇔ –10x – 4 = 0 ⇔ x = .
Do đó m = 3 thỏa mãn.
• Với m = –2, ta có 0.x2 – 2(–2 + 2)x – 4 = 0.
⇔ 0.x – 4 = 0 (vô nghiệm)
Do đó m = –2 không thỏa mãn.
+) Trường hợp 2: a ≠ 0 ⇔ m ≠ 3 và m ≠ –2.
f(x) là tam thức bậc hai ẩn x có:
∆’ = (m + 2)2 – (m2 – m – 6).(–4)
= m2 + 4m + 4 + 4m2 – 4m – 24
= 5m2 – 20
Phương trình f(x) = 0 có nghiệm khi và chỉ khi ∆’ ≥ 0
⇔ 5m2 – 20 ≥ 0
Tam thức bậc hai f(m) = 5m2 – 20 có ∆ = 02 – 4.5.(–20) = 400 > 0.
Do đó f(m) có hai nghiệm phân biệt là: m1 = –2, m2 = 2.
Ta lại có a = 5 > 0.
Vì vậy:
⦁ f(m) dương với mọi m thuộc hai khoảng (–∞; –2) và (2; +∞);
⦁ f(m) âm với mọi m thuộc khoảng (–2; 2);
⦁ f(m) = 0 khi m = –2 hoặc m = 2.
Do đó bất phương trình 5m2 – 20 ≥ 0 có tập nghiệm là (–∞; –2] ∪ [2; +∞).
So với điều kiện m ≠ 3 và m ≠ –2, ta nhận m ∈ (–∞; –2) ∪ [2; +∞) \ {3}.
Kết hợp cả hai trường hợp, ta thu được m ∈ (–∞; –2) ∪ [2; +∞) \ {3}.
Vậy ta chọn phương án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Tam thức bậc hai I(x) = 200x2 – 1400x + 2400 có:
∆’ = (–700)2 – 200.2400 = 10 000 > 0.
Suy ra I(x) có hai nghiệm phân biệt là:

Ta lại có a = 200 > 0 và 0 ≤ x ≤ 5.
Vì vậy ta có bảng xét dấu sau:
x |
0 |
|
3 |
|
4 |
|
5 |
f(x) |
|
+ |
0 |
– |
0 |
+ |
|
Theo bảng xét dấu ta có:
⦁ I(x) dương với mọi x thuộc hai khoảng [0; 3) và (4; 5];
⦁ I(x) âm với mọi x thuộc khoảng (3; 4);
⦁ I(x) = 0 khi x = 3 hoặc x = 4.
Do đó doanh nghiệp đó không có lãi khi và chỉ khi I(x) ≤ 0.
Tức là khi x ∈ [3; 4].
Hay ta có thể nói là khi cửa hàng giảm giá từ 3 đến 4 triệu đồng thì doanh nghiệp đó không có lãi.
Vậy ta chọn phương án B.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Hàm số đã cho có tập xác định là ℝ khi và chỉ khi (2 – 3m)x2 + 2mx + m – 1 > 0 với mọi x ∈ ℝ.
Đặt f(x) = (2 – 3m)x2 + 2mx + m – 1.
Trường hợp 1: a = 0 ⇔ 2 – 3m = 0 ⇔ m = .
Với , ta có
Do đó không thỏa mãn.
Trường hợp 2: a ≠ 0.
Khi đó f(x) là tam thức bậc hai có:
∆’ = m2 – (2 – 3m)(m – 1)
= m2 – (–3m2 + 5m – 2)
= 4m2 – 5m + 2.
Để f(x) > 0 với mọi x ∈ ℝ thì a > 0 và ∆ < 0.
(1)
Ta giải bất phương trình 4m2 – 5m + 2 < 0 như sau:
Tam thức bậc hai g(m) = 4m2 – 5m + 2 có ∆ = (–5)2 – 4.4.2 = –7 < 0.
Do đó g(m) vô nghiệm.
Ta lại có am = 4 > 0.
Vì vậy g(m) > 0, với mọi giá trị của m ∈ ℝ.
Do đó không có giá trị nào của m thỏa mãn g(m) = 4m2 – 5m + 2 < 0.
Vì vậy không có giá trị nào của m để (1) thỏa mãn.
Kết hợp cả hai trường hợp, ta thu được m ∈ ∅.
Vậy ta chọn phương án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.