Cho hình chóp đều có cạnh đáy bằng a, góc giữa mặt bên và đáy bằng 60. Tính theo thể tích khối chóp S.ABC.
Quảng cáo
Trả lời:
Phương pháp:
+ Sử dụng định nghĩa để tìm góc giữa hai mặt phẳng (P) và (Q):
khi đó góc giữa (P) và (Q) chính là góc giữa hai đường thẳng a và b.
+ Diện tích tam giác đều cạnh a được tính theo công thức S =
+ Tính thể tích V = S.h với S là diện tích đáy, h là chiều cao hình chóp.
Cách giải:
Gọi E là trung điểm của BC, O là trọng tâm tam giác ABC => SO(ABCD) (do S.ABC là hình chóp đều)
Suy ra AEBC (do ABC đều) và SEBC (do SBC cân tại S)
Ta có nên góc giữa (ABC) và (SBC) là SEA.
Từ giả thiết suy ra SEA = 60.
Tam giác ABC đều cạnh a
Xét tam giác SOE vuông tại O (do SO(ABC)=> SOAE), ta có:
Diện tích tam giác đều ABC là:
Vậy
Chọn A
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Xác định góc 30(góc tạo bởi hai mặt phẳng là góc giữa hai đường thẳng cùng vuông góc với giao tuyến).
Tính diện tích tam giác đáy và chiều cao lăng trụ rồi tính thể tích theo công thức V = B.h
Cách giải:
Ta có:
Chọn A.
Lời giải
Chọn D.
=> AM(SBC)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.