Câu hỏi:

08/02/2020 6,081 Lưu

Cho hình hộp ABCD.A'B'C'D' có tất cả các mặt là hình vuông cạnh a. Các điểm M, N lần lượt nằm trên AD', DB sao cho AM = DN = x; (0 < x < a2). Khi x thay đổi, đường thẳng MN luôn song song với mặt phẳng cố định nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

 

* Sử dụng định lí Ta-lét đảo.

Ta có: 

Áp dụng định lí Ta-lét đảo, ta có AD, MN, BD' lần lượt nằm trên ba mặt phẳng song song.

=> M song song với mặt phẳng (P) chứa BD' và song song với AD.

Nên MN//(BCD'A') hay MN//(A'BC)

* Sử dụng định lí Ta-lét.

* Sử dụng định lí Ta-lét.

Vì AD//A'D'  nên tồn tại (P) là mặt phẳng qua AD và song song với mp (A'D'CB)

(Q) là mặt phẳng qua M và song song với mp (A'D'CB). Giả sử (Q) cắt DB tại N

Theo định lí Ta-lét ta có: 

Mà các mặt của hình hộp là hình vuông cạnh a nên AD' = DB = a2

Từ (*), ta có: AM = DN' => DN' = DN

(Q)//(A'D'CB) suy ra  luôn song song với mặt phẳng cố định (A'D'CB) hay (A'BC)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp:

Xác định góc 30°(góc tạo bởi hai mặt phẳng là góc giữa hai đường thẳng cùng vuông góc với giao tuyến).

Tính diện tích tam giác đáy và chiều cao lăng trụ rồi tính thể tích theo công thức V = B.h

 

Cách giải:

Ta có:


Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP