Câu hỏi:
27/10/2022 2,248Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Gọi I là trung điểm của AC nên I(3; 3)
Theo tính chất của hình vuông ta có: AC ∩ BD = I
⇒ Điểm I(3; 3) thuộc BD
Ta có:
Mặt khác ta có: AC vuông góc với BD ( Vì ABCD là hình vuông) nên đường chéo BD nhận làm vectơ pháp tuyến,
Vậy phương trình đường chéo BD đi qua điểm I(3; 3) và có làm vectơ pháp tuyến là: 1(x – 3) + 2(y – 3) = 0 ⇔ x + 2y – 9 = 0.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có: = 2(1; 1)
Đường thẳng AB nhận vectơ làm vectơ chỉ phương.
Phương trình tham số của đường thẳng đi qua điểm A(−1; 0) và nhận vectơ làm vectơ chỉ phương là: .
Vì điểm D thuộc đường thẳng AB nên toạ độ điểm M có dạng D(−1 + t; t).
Ta có: CD = = 5
⇔ = 25
⇔ 2t2 – 14t = 0
⇔.
Với 2 giá trị của t tương ứng có 2 toạ độ của điểm D thoả mãn là: D1(− 1; 0) , D2(6; 7).
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Do M ∈ d nên M(t; 1 + 2t)
Theo giả thiết M cách đều hai điểm A, B nên MA = MB
⇔ =
⇔ =
⇔ t2 + 4t + 4 + 4t2 – 4t + 1 = t2 – 8t + 16 + 4t2 + 28t + 49
⇔ 5t +15 = 0
⇔ t = −3
Với t = −3 thì M(−3; −5)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.