Câu hỏi:

29/10/2022 9,745 Lưu

Trong các số nguyên từ 100 đến 999, số các số mà các chữ số của nó tăng dần hoặc giảm dần (kể từ trái qua phải) bằng:

A. 204;

B. 120;

C. 168;

D. 240.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Vì các số tăng dần hoặc giảm dần nên số nguyên cần lập có 3 chữ số đôi một khác nhau. Xét hai trường hợp:

Trường hợp 1, Các chữ số tăng dần từ trái qua phải.

Khi đó 3 chữ số được chọn từ các số 1; 2; 3; 4; 5; 6; 7; 8; 9.

Với một cách chọn 3 chữ số từ tập này ta có duy nhất một cách xếp chúng theo thứ tự tăng dần. Do đó số các số lập được trong trường hợp này là: C93 = 84 (số).

Trường hợp 2, Các chữ số giảm dần từ trái qua phải.

Khi đó 3 chữ số được chọn từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9.

Với một cách chọn 3 chữ số từ tập này ta có duy nhất một cách xếp chúng theo thứ tự giảm dần. Do đó số các số lập được trong trường hợp này là: C103= 120 (số)

Tổng hợp, áp dụng quy tắc cộng số các số có thể lập là: 84 + 120 = 204 (số).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có số cách xếp sách văn là 5! cách xếp

Số cách xếp sách Toán là 7! cách xếp

Trường hợp 1, sách Văn đứng trước sách Toán ta có số cách xếp là 5!.7! cách xếp

Trường hợp 2, sách Toán đứng trước sách Văn ta có số cách xếp là 7!.5! cách xếp

Tổng kết, áp dụng quy tắc cộng ta có số cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài sao cho sách Văn phải xếp kề nhau và sách Toán xếp kề nhau là 5!.7! + 7!.5! = 2.5!.7!

 

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta chọn các quả cầu theo trình tự sau:

Công đoạn 1. Chọn quả cầu xanh: 7 cách chọn (Vì cầu xanh được chọn tuỳ ý từ 1 đến 7).

Công đoạn 2, Chọn quả cầu vàng: có 7 cách chọn (Vì số đánh trên cầu vàng không được chọn lại số đã đánh trên quả cầu xanh đã chọn).

Công đoạn 3, Chọn quả cầu đỏ: có 8 cách chọn (Vì số trên quả cầu đỏ chọn không được chọn lại các số mà quả cầu xanh và quả cầu vàng đã chọn).

Vậy số cách lấy ra 3 quả cầu khác màu và khác số là 7.7.8 = 392 cách chọn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP