Câu hỏi:

30/10/2022 246

Cho hai đa thức A(x) = −5x3 + 3x2 + 2 và B(x) = 3x3 + 4x + 1. Đa thức nào sau đây có nghiệm là x = 0?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có:

C(x) = A(x) – B(x) = (−5x3 + 3x2 + 2) – (3x3 + 4x + 1) = −5x3 + 3x2 + 2 – 3x3 – 4x – 1 = (−5x3− 3x3) + 3x2 − 4x + (2 – 1) = − 8x3 + 3x2 − 4x + 1.

Khi đó C(0) = − 8.03 + 3.02 – 4.0 + 1 = 1 suy ra x = 0 không là nghiệm của A(x) − B(x).

D(x) = A(x) + B(x) = = (−5x3 + 3x2 + 2) + (3x3 + 4x + 1) = −5x3 + 3x2 + 2 + 3x3 + 4x + 1 = (−5x3 + 3x3) + 3x2 + 4x + (2 + 1) = − 3x3 + 3x2 − 4x + 3.

D(0) = − 3.03 + 3.02 – 4.0 + 3 = 3 suy ra x = 0 không là nghiệm của A(x) + B(x).

E(x) = A(x) – B(x) – B(x) = (−5x4 + 3x2 + 2) – (3x3 + 4x + 1) – (3x3 + 4x + 1)

= −5x3 + 3x2 + 2 – 3x3 – 4x – 1 – 3x3 – 4x – 1

= (−5x3 – 3x3 – 3x3) + 3x2 + (– 4x – 4x) + (2 – 1 – 1)

= −11x3 + 3x2 – 8x

E(0) = −11.03 + 3.02 – 8.0 = 0 suy ra x = 0 là nghiệm của A(x) − B(x) − B(x).

F(x) = A(x) + B(x) + B(x) = (−5x4 + 3x2 + 2) + (3x3 + 4x + 1) + (3x3 + 4x + 1)

= −5x3 + 3x2 + 2 + 3x3 + 4x + 1 + 3x3 + 4x + 1

= (−5x3 + 3x3 + 3x3) + 3x2 + (4x + 4x) + (2 + 1 + 1)

= x3 + 3x2 + 8x + 4

F(0) = 03 + 3.02 + 8.0 + 4 = 4 suy ra x = 0 không là nghiệm của A(x) + B(x) + B(x).

Vậy x = 0 là nghiệm của đa thức A(x) – B(x) – B(x).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho A = x2 + 3x3 – x – 1. Tìm đa thức B sao cho: A – B = −2x2

Lời giải

Đáp án đúng là: D

A – B = −2x2

Suy ra:

B = A + 2x2

= x2 + 3x3 – x – 1 + 2x2

= 3x3 + 3x2 – x – 1

Vậy B = 3x3 + 3x2 – x – 1.

Lời giải

Đáp án đúng là: C

P + Q = (−5x5 + 3x2 + 3x + 1) + (5x5 + x4 + x3 + 2)

= −5x5 + 3x2 + 3x + 1 + 5x5 + x4 + x3 + 2

= (−5x5 + 5x5) + x4 + x3 + 3x2 + 3x + (1 + 2)

= x4 + x3 + 3x2 + 3x + 3.

Bậc của  đa thức P + Q là 4.

P − Q = (−5x5 + 3x2 + 3x + 1) − (5x5 + x4 + x3 + 2)

= −5x5 + 3x2 + 3x + 1 – 5x5 – x4 – x3 – 2

= (−5x5 – 5x5) – x4 – x3 + 3x2 + 3x + (1 – 2)

= −10x5 – x4 – x3 + 3x2 + 3x – 2

Bậc của đa thức P + Q là 5.

Câu 3

Cho đa thức H(x) = x3 – 2x2 + 1. Tìm đa thức P(x) sao cho H(x) + P(x) = x4 + 2x3 + x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay