Câu hỏi:
04/11/2022 998Cho tam giác ABC có điểm I nằm trên cạnh AC sao cho \(\overrightarrow {BI} = \frac{3}{4}\overrightarrow {AC} - \overrightarrow {AB} \), J là điểm thỏa mãn \(\overrightarrow {BJ} = \frac{1}{2}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} \). Ba điểm nào sau đây thẳng hàng ?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có: \(\overrightarrow {BJ} = \frac{1}{2}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} \)
\(\overrightarrow {BI} = \frac{3}{4}\overrightarrow {AC} - \overrightarrow {AB} = \frac{3}{2}.\frac{1}{2}\overrightarrow {AC} - \frac{3}{2}.\frac{2}{3}\overrightarrow {AB} = \frac{3}{2}\left( {\frac{1}{2}\overrightarrow {AC} - \frac{2}{3}\overrightarrow {AB} } \right) = \frac{3}{2}\overrightarrow {BJ} \)
Do đó, \(\overrightarrow {BI} = \frac{3}{2}\overrightarrow {BJ} \)
Vậy B, I, J thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Cho mẫu số liệu sau:
1; 9; 12; 10; 2; 9; 15; 11; 20; 17.
Tứ phân vị Q1, Q2, Q3 của mẫu số liệu trên lần lượt là:
Câu 4:
Cho hình bình hành ABCD với giao điểm hai đường chéo là I. Khi đó:
Câu 5:
Cho góc α thỏa mãn \(\sin \alpha = \frac{{12}}{{13}}\) và 90° < α < 180°. Tính cosα.
Câu 6:
Cặp số nào sau đây là nghiệm của hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}2x - 1 > 0\\x + 5y < 4\end{array} \right.\) ?
Câu 7:
Cho các vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương và \(\overrightarrow x = \overrightarrow a - 3\overrightarrow b \), \(\overrightarrow y = 2\overrightarrow a + 6\overrightarrow b \) và \(\overrightarrow z = - 3\overrightarrow a + \overrightarrow b \). Khẳng định nào sau đây là đúng ?
về câu hỏi!