Câu hỏi:

04/11/2022 7,377

Cho hình bình hành ABCD với giao điểm hai đường chéo là I. Khi đó:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho hình bình hành ABCD với giao điểm hai đường chéo là I. Khi đó: A. vecto AB - vecto AI (ảnh 1)

+) Ta có: \(\overrightarrow {AB} - \overrightarrow {AI} = \overrightarrow {IB} \ne \overrightarrow {BI} \) nên A sai.

+) \(\overrightarrow {AB} - \overrightarrow {DA} = \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \ne \overrightarrow {BD} \) (theo quy tắc hình bình hành) nên B sai.

+) Ta có: \(\overrightarrow {AB} - \overrightarrow {DC} = \overrightarrow {AB} + \overrightarrow {CD} \)

\(\overrightarrow {BA} = \overrightarrow {CD} \) (do ABCD là hình bình hành)

Vậy \(\overrightarrow {AB} - \overrightarrow {DC} = \overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AB} + \overrightarrow {BA} = \overrightarrow {AA} = \overrightarrow 0 \). Nên C đúng.

+) Ta có: \(\overrightarrow {AB} - \overrightarrow {DB} = \overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} \ne \overrightarrow 0 \). Vậy D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Áp dụng tính chất giao hoán và quy tắc ba điểm cho ba điểm A, C, B ta có: \(\overrightarrow {CB} + \overrightarrow {AC} = \overrightarrow {AC} + \overrightarrow {CB} = \overrightarrow {AB} \)

Vậy \(\overrightarrow {AB} = \overrightarrow {CB} + \overrightarrow {AC} \).

Lời giải

Để làm đường điện dây cao thế ở Hà Giang từ vị trí bản A đến bản B, người ta phải  (ảnh 1)

Xét tam giác ABC vuông tại A

Có: ABAC \(\overrightarrow {AB} .\overrightarrow {AC} = 0\) \(\overrightarrow {AB} .\overrightarrow {AD} = 0\) vì D thuộc AC

Vì M là trung điểm của BC nên ta có: \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)

Lại có: \(\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \) (quy tắc ba điểm)

Khi đó ta có \(2\overrightarrow {AM} .\overrightarrow {BD} \)\( = \left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\)

\( = \overrightarrow {AB} .\overrightarrow {AD} - {\overrightarrow {AB} ^2} + \overrightarrow {AC} .\overrightarrow {AD} - \overrightarrow {AC} .\overrightarrow {AB} \)

\( = 0 - A{B^2} + AC.AD.cos0^\circ - 0\)

\( = - {a^2} + 2a.\frac{a}{2} = 0\).

Vậy \(\overrightarrow {AM} .\overrightarrow {BD} = 0 \Leftrightarrow \overrightarrow {AM} \bot \overrightarrow {BD} \Leftrightarrow AM \bot BD\) (đcpcm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP