Câu hỏi:
04/11/2022 912Cho mẫu số liệu sau:
24; 16; 12; 5; 9; 3.
Tìm độ lệch chuẩn của mẫu số liệu trên (làm tròn đến hàng phần trăm).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Số trung bình của mẫu số liệu trên là:
\(\overline x = \frac{{24 + 16 + 12 + 5 + 9 + 3}}{6} = 11,5\).
Công thức tính phương sai của một mẫu số liệu là:
S2 = \(\frac{1}{n}\left[ {{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ... + {{\left( {{x_n} - \overline x } \right)}^2}} \right]\)
Thay số ta có:
S2 = \[\frac{1}{6}\][(24 – 11,5)2 + (16 – 11,5)2 + (12 – 11,5)2 + (5 – 11,5)2 + (9 – 11,5)2 + (3 – 11,5)2] ≈ 49,58.
Do đó phương sai của mẫu số liệu trên là 49,58.
Độ lệch chuẩn của mẫu số liệu trên là S = \(\sqrt {{S^2}} \)= \(\sqrt {49,58} \) ≈ 7,04.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Cho mẫu số liệu sau:
1; 9; 12; 10; 2; 9; 15; 11; 20; 17.
Tứ phân vị Q1, Q2, Q3 của mẫu số liệu trên lần lượt là:
Câu 4:
Cho hình bình hành ABCD với giao điểm hai đường chéo là I. Khi đó:
Câu 5:
Cho góc α thỏa mãn \(\sin \alpha = \frac{{12}}{{13}}\) và 90° < α < 180°. Tính cosα.
Câu 6:
Cặp số nào sau đây là nghiệm của hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}2x - 1 > 0\\x + 5y < 4\end{array} \right.\) ?
Câu 7:
Cho các vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương và \(\overrightarrow x = \overrightarrow a - 3\overrightarrow b \), \(\overrightarrow y = 2\overrightarrow a + 6\overrightarrow b \) và \(\overrightarrow z = - 3\overrightarrow a + \overrightarrow b \). Khẳng định nào sau đây là đúng ?
về câu hỏi!