Câu hỏi:

04/11/2022 2,696

Trong khai triển của nhị thức (x – y)5, hệ số của x3.y3 là;

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Ta có:

(x – y)5

= \(C_5^0.{x^5} + C_5^1.{x^4}.\left( { - y} \right) + C_5^2.{x^3}.{\left( { - y} \right)^2} + C_5^3.{x^2}.{\left( { - y} \right)^3} + C_5^4.x.{\left( { - y} \right)^4} + C_5^5.{\left( { - y} \right)^5}\)

= \({x^5} - 5.{x^4}.y + 10.{x^3}.{y^2} - 10{x^2}.{y^3} + 5.x.{y^4} - {y^5}\)

Trong khai triển không có x3y3 nên không tồn tại hệ số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Khai triển nhị thức (2x + y)5. Ta được kết quả là

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

(2x + y)5

= \[C_5^0{\left( {2x} \right)^5} + C_5^1{\left( {2x} \right)^4}.y + C_5^2{\left( {2x} \right)^3}.{y^2} + C_5^3{\left( {2x} \right)^2}.{y^3} + C_5^4{\left( {2x} \right)^1}.{y^4} + C_5^5.{y^5}\]

= 32x5 + 80x4y + 80x3y2 + 40x2y3 + 10xy4 + y5.

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có:

\({\left( {1 + x} \right)^5} = C_5^0{.1^5} + C_5^1{.1^4}.x + C_5^2{.1^3}.{x^2} + C_5^3{.1^2}.{x^3} + C_5^4.1.{x^4} + C_5^5.{x^5}\)

= \(1 + 5x + 10{x^2} + 10{x^3} + 5{x^4} + {x^5}\).

Tổng các hệ số là: 1 + 5 + 10 + 10 + 5 + 1 = 32.

Câu 3

Tìm số hạng chứa x3 trong khai triển \[{\left( {x + \frac{1}{{2x}}} \right)^5}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong khai triển \({\left( {x - \sqrt y } \right)^4}\), tổng của các số hạng chứa x4 và y2 là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP