Câu hỏi:

06/11/2022 9,653

Cho tam giác ABC có tọa độ ba đỉnh A(1; 4), B(3; –1), C(6; 2). Phương trình đường trung tuyến AM của tam giác ABC là:

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Media VietJack

Tam giác ABC có AM là đường trung tuyến.

Suy ra M là trung điểm BC.

Khi đó \(\left\{ \begin{array}{l}{x_M} = \frac{{{x_B} + {x_C}}}{2} = \frac{{3 + 6}}{2} = \frac{9}{2}\\{y_M} = \frac{{{y_B} + {y_C}}}{2} = \frac{{ - 1 + 2}}{2} = \frac{1}{2}\end{array} \right.\)

Suy ra tọa độ \(M\left( {\frac{9}{2};\frac{1}{2}} \right)\).

Đường trung tuyến AM đi qua hai điểm A(1; 4) và \(M\left( {\frac{9}{2};\frac{1}{2}} \right)\).

Suy ra phương trình AM: \(\frac{{x - 1}}{{\frac{9}{2} - 1}} = \frac{{y - 4}}{{\frac{1}{2} - 4}}\)

\( \Leftrightarrow \frac{{x - 1}}{{\frac{7}{2}}} = \frac{{y - 4}}{{ - \frac{7}{2}}}\)

\( \Leftrightarrow - \frac{7}{2}\left( {x - 1} \right) = \frac{7}{2}\left( {y - 4} \right)\)

–x + 1 = y – 4

x + y – 5 = 0.

Vậy ta chọn phương án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đường thẳng ∆: 12x – 7y + 5 = 0 không đi qua điểm nào sau đây?

Xem đáp án » 06/11/2022 5,821

Câu 2:

Cho phương trình tham số của đường thẳng d: \(\left\{ \begin{array}{l}x = 5 + t\\y = - 9 - 2t\end{array} \right.\). Trong các phương trình sau, phương trình nào là phương trình tổng quát của d?

Xem đáp án » 06/11/2022 4,905

Câu 3:

Cho đường thẳng ∆: \(\left\{ \begin{array}{l}x = - 3 + 5t\\y = 2 - 4t\end{array} \right.\) và các điểm M(32; 50), N(–28; 22), P(17; –14), Q(–3; –2). Các điểm nằm trên ∆ là:

Xem đáp án » 06/11/2022 1,193

Câu 4:

Phương trình tổng quát của đường thẳng đi qua hai điểm A(–2; 4) và B(1; 0) là:

Xem đáp án » 06/11/2022 1,172

Câu 5:

Cho tam giác ABC có tọa độ 3 đỉnh A(4; 5), B(–6; –1), C(1; 1). Phương trình đường cao BH của tam giác ABC là:

Xem đáp án » 06/11/2022 640

Câu 6:

Cho đường thẳng d: 3x + 5y – 15 = 0. Phương trình nào sau đây không phải là một phương trình khác của d?

Xem đáp án » 06/11/2022 424
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua