Câu hỏi:

06/11/2022 1,027

Cho elip (E): 9x2 + 36y2 – 144 = 0. Tỉ số \(\frac{c}{a}\) bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Ta có 9x2 + 36y2 – 144 = 0

9x2 + 36y2 = 144

\( \Leftrightarrow \frac{{{x^2}}}{{144.\frac{1}{9}}} + \frac{{{y^2}}}{{144.\frac{1}{{36}}}} = 1\)

\( \Leftrightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\).

Ta có \(\left\{ \begin{array}{l}{a^2} = 16\\{b^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 2\end{array} \right.\)

Suy ra c2 = a2 – b2 = 16 – 4 = 12.

Khi đó \(c = \sqrt {12} = 2\sqrt 3 \).

Vì vậy tỉ số \(\frac{c}{a} = \frac{{2\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{2}\).

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Phương trình chính tắc của parabol có dạng y2 = 2px (p > 0).

Ta có 2p = 4. Suy ra p = 2.

Khi đó \(\frac{p}{2} = 1\).

Phương trình đường chuẩn của parabol là: x + 1 = 0 x = –1.

Vậy ta chọn phương án D.

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Hypebol (H) có một tiêu điểm là F(–3; 0).

Suy ra c = 3.

Phương trình chính tắc của (H) có dạng \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) (a > 0, b > 0).

Ta có M(2; 0) (H).

Suy ra \(\frac{{{2^2}}}{{{a^2}}} - \frac{{{0^2}}}{{{b^2}}} = 1\).

Khi đó a2 = 4.

Ta có b2 = c2 – a2 = 32 – 4 = 5.

Vậy phương trình chính tắc của (H): \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{5} = 1\).

Do đó ta chọn phương án B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP