Câu hỏi:

13/07/2024 773

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ cây sau đây:

a) 

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

b)

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

Gọi các số còn thiếu là a, b, c, d như trên hình.

+) d = 2. 3 = 6

+) c = d. 7 = 6. 7 = 42

+) b = 5. 7 = 35

+) a = b. c = 35. 42 = 1 470

Vậy ta được hình sau:

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

b) 

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

Gọi các số còn thiếu là a, b, c, d, e như trên hình.

+) 21 = e. 7   e = 21: 7 = 3

+) c = 3. 21 = 63

+) d = 2. 5 = 10

+) b = d. 7 = 10. 7 = 70

+) a = b. c = 70. 63 = 4 410

Vậy ta được hình sau:

Tìm các số còn thiếu trong phân tích một số ra thừa số nguyên tố theo sơ đồ

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tra bảng nguyên tố ta thấy 829 và 971 là số nguyên tố

Theo dấu hiệu chia hết cho 2; 3; 5 ta có 9 891 ⁝ 3; 12 344 ⁝ 2; 32 015 ⁝ 5 nên 9 891; 12 344; 32 015 là hợp số.

Lời giải

Tìm chữ số a để: a) 49a là số nguyên tố

a) Từ bảng trên, ta có số 491, 499 là các số nguyên tố

Do đó để Tìm chữ số a để: a) 49a là số nguyên tố là số nguyên tố thì a = 1 hoặc a = 9.

Vậy a = 1 hoặc a = 9.

b)

Ta có các số 233; 239 là số nguyên tố.

Do đó để Tìm chữ số a để: a) 49a là số nguyên tố là hợp số thì a ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9};

Vậy a ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay