Câu hỏi:

09/12/2022 3,714

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số =x39x2 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C.

Tập xác định D=3;3.

Suy ra không tồn tại limx+fx,limxfx. Do đó đồ thị hàm số không có đường tiệm cận ngang.

Ta có y=x39x2=3x3+x.

limx3+fx=limx3+3x3+x=.

Suy ra đồ thị hàm số có 1 tiệm cận đứng x = -3

Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn C.

Ta có: fx=ax3+bx2+cx+df'x=3ax2+2bx+c.

Từ đồ thị ta thấy:

Tại x=±1f'x=0 và đồ thị hàm số đi qua các điểm: 1;1;0;1 và 1;3.

Từ đó ta có hệ phương trình:

y'1=0y'1=0y1=1y0=1a=1b=0c=3d=1.

Suy ra: T=ab+c+d=1.

Lời giải

Chọn C.

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a can bậc hai 2 cạnh bên SA= 2a (ảnh 2)

Gọi I là trung điểm CD do S.ABCD là hình chóp tứ giác đều nên dễ thấy OICD,SICD.

Ta có ODAC,ODSOODSAC. Dựng OHSCDHSC (định lý ba đường vuông góc). Do đó, góc giữa hai mặt phẳng (SCD) và (SAC) là góc DHO^.

Ta có: IC=OI=a22,OC=a2.22=a,SC=2aSI=SC2IC2=4a2a22=a142.

Xét tam giác SCD ta có: SΔSCD=CD.SI2=DH.SC2a2.a1422=DH.2a2DH=a72.

Xét tam giác vuông SOC ta có:

SO=SC2OC2=4a2a2=a3;1SO2+1CO2=1OH213a2+1a2=1OH2OH=a32.

Xét tam giác vuông DOH ta có: cosDHO^=OHDH=a32a72=37=217.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP