Câu hỏi:

10/12/2022 1,387

Trong mặt phẳng tọa độ Oxyz cho hình vuông MNPQ M10;10,N10;10,P10;10, Q10;10. Gọi S là tập hợp tất cả các điểm có tọa độ đều là các số nguyên nằm trong hình vuông MNPQ (tính cả các điểm nằm trên các cạnh của hình vuông). Chọn ngẫu nhiên một điểm Ax;yS, khi đó xác suất để chọn được điểm A thỏa mãn OA.OM1 là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A.

- Số điểm có tọa độ nguyên thuộc hình vuông MNPQ kể cả các điểm trên cạnh là: 21×21.

Suy ra số phần tử không gian mẫu là: 21×21

- Ta có OM=10;10,OA=x,y,OM.OA=10x+10y1x+y110 với x,y thuộc đoạn 10;10. Khi đó điểm A nằm trên đường chéo NQ (đường phân giác góc vuông thứ II, IV). Suy ra có 21 điểm A như vậy.

- Xác suất cần tìm là 2121.21=121.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn C.

Ta có: fx=ax3+bx2+cx+df'x=3ax2+2bx+c.

Từ đồ thị ta thấy:

Tại x=±1f'x=0 và đồ thị hàm số đi qua các điểm: 1;1;0;1 và 1;3.

Từ đó ta có hệ phương trình:

y'1=0y'1=0y1=1y0=1a=1b=0c=3d=1.

Suy ra: T=ab+c+d=1.

Lời giải

Chọn C.

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a can bậc hai 2 cạnh bên SA= 2a (ảnh 2)

Gọi I là trung điểm CD do S.ABCD là hình chóp tứ giác đều nên dễ thấy OICD,SICD.

Ta có ODAC,ODSOODSAC. Dựng OHSCDHSC (định lý ba đường vuông góc). Do đó, góc giữa hai mặt phẳng (SCD) và (SAC) là góc DHO^.

Ta có: IC=OI=a22,OC=a2.22=a,SC=2aSI=SC2IC2=4a2a22=a142.

Xét tam giác SCD ta có: SΔSCD=CD.SI2=DH.SC2a2.a1422=DH.2a2DH=a72.

Xét tam giác vuông SOC ta có:

SO=SC2OC2=4a2a2=a3;1SO2+1CO2=1OH213a2+1a2=1OH2OH=a32.

Xét tam giác vuông DOH ta có: cosDHO^=OHDH=a32a72=37=217.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP