Câu hỏi:

17/12/2022 232

Xét tập hợp các khối nón tròn xoay có cùng góc ở đỉnh 2β=900 và có độ dài đường sinh bằng nhau. Có thể sắp xếp được tối đa bao nhiêu khối nón thỏa mãn cứ hai khối nón bất kì thì chúng chỉ có đỉnh chung hoặc ngoài đỉnh chung đó ra chính có thể có chung một đường sinh duy nhất?                      

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B.

Xét tập hợp các khối nón tròn xoay có cùng góc ở đỉnh 2 beta= 90 độ  và có độ dài đường sinh (ảnh 1)

Khi sắp 2 hình nón thỏa mãn điều kiện ban đầu có chung 1 đường sinh và đỉnh chung. Khi đó hai
hình nón đã cho có đáy nằm trên hai mặt phẳng vuông góc với nhau.

Vậy sẽ sắp xếp được tối đa sáu hình nón thỏa mãn điều kiện ban đầu các các khối nón có đỉnh nằm
tại tâm của hình lập phương và các mặt đáy của hình nón nội tiếp sáu mặt của hình lập phương.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

Cho hàm số y=fx=ax3+bx2+cx+d có đồ thị như hình vẽ.

Cho hàm số y= f(x)= ax^3+bx^2+cx+d có đồ thị như hình vẽ.  Khi đó phương trình f(f^2(x))=1  (ảnh 1)

Khi đó phương trình ff2x=1 có bao nhiêu nghiệm?

Lời giải

Chọn A.

Cho hàm số y= f(x)= ax^3+bx^2+cx+d có đồ thị như hình vẽ.  Khi đó phương trình f(f^2(x))=1  (ảnh 2)

Dựa vào mối tương giao giữa các đồ thị hàm số ta có:

ff2x=1f2x=a2;1 vo nghiemf2x=0f2x=b1;2fx=0fx=b1;2fx=b2;1.

+ Phương trình fx=0 có 3 nghiệm phân biệt.

+ Phương trình fx=b có 3 nghiệm phân biệt.

+ Phương trình fx=-b có 1 nghiệm.

Dựa vào đồ thị ta thấy các nghiệm trên không trùng nhau. Vậy phương trình có 7 nghiệm phân biệt.

Câu 3

Cho cấp số cộng un có số hạng đầu u1=2 và công sai d = -7. Giá trị u6 bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hàm số y=x+2x+1C và đường thẳng d:y=x+m. Có bao nhiêu giá trị nguyên m thuộc khoảng 10;10 để đường thẳng (d) cắt đồ thị (C) tại hai điểm về hai phía trục hoành?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hàm số y=x2xm nghịch biến trên khoảng ;3 khi: 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho hàm số y=f(x) có đạo hàm trên R và đồ thị hàm số y=f'(x) như hình bên. Khẳng định nào sau đây là đúng?

Cho hàm số y=f(x) có đạo hàm trên R và đồ thị hàm số y=f'(x) như hình bên. Khẳng định  (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay