Câu hỏi:

28/12/2022 791

Số nghiệm của phương trình \(\sqrt { - {x^2} + 4x} = 2x - 2\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Bình phương hai vế của phương trình đã cho, ta được:

– x2 + 4x = (2x – 2)2

– x2 + 4x = 4x2 – 8x + 4

5x2 – 12x + 4 = 0

x = 2 hoặc \(x = \frac{2}{5}\)

Với x = 2, ta có \(\sqrt { - {2^2} + 4.2} = 2.2 - 2\) (đúng)

Với \(x = \frac{2}{5}\), ta có \(\sqrt { - {{\left( {\frac{2}{5}} \right)}^2} + 4.\frac{2}{5}} = 2.\frac{2}{5} - 2\) (sai)

Vì vậy khi thay lần lượt các giá trị x = 2 và \(x = \frac{2}{5}\) vào phương trình đã cho, ta thấy chỉ có x = 2 thỏa mãn.

Vậy phương trình đã cho có một nghiệm duy nhất.

Ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Tam thức bậc hai có dạng f(x) = ax2 + bx + c, với a ≠ 0.

Ta thấy chỉ có đa thức ở phương án B có dạng f(x) = ax2 + bx + c với a = –1, b = 2 và c = –10.

Vậy ta chọn phương án B.

Lời giải

Hướng dẫn giải

Ta có (C): x2 + y2 – 2x + 2y – 2 = 0

(x – 1)2 + (y + 1)2 = 4

Khi đó tâm của đường tròn (C) là I(1; – 1) và R = 2.

a) Vì đường thẳng () song song với (d) nên () có dạng 4x – 3y + c = 0 .

Ta có đường thẳng () tiếp xúc với (C) nên:

d(I, ∆) = \(\frac{{\left| {4.1 - 3.\left( { - 1} \right) + c} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\left| {c + 7} \right|}}{5} = 2\)

\( \Leftrightarrow \left| {c + 7} \right| = 10\)

\( \Leftrightarrow \left[ \begin{array}{l}c + 7 = 10\\c + 7 = - 10\end{array} \right.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP