Câu hỏi:

28/12/2022 3,339

Cho đường tròn có phương trình: (x – 1)2 + (y – 2)2 = 4. Có bao nhiêu phương trình tiếp tuyến của đường tròn song song với đường thẳng x + 2y – 3 = 0?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Đường tròn (x – 1)2 + (y – 2)2 = 4 có tâm I(1; 2) và bán kính R = 2.

Do tiếp tuyến của đường tròn song song với đường thẳng x + 2y – 3 = 0 nên phương trình tiếp tuyến có dạng: x + 2y + c = 0 (c ≠ – 3).

Khoảng cách từ I đến phương trình tiếp tuyến d chính bằng bán kính đường tròn và bằng R = 2.

Hay d(I, d) = 2 \( \Leftrightarrow \frac{{\left| {1 + 2.2 + c} \right|}}{{\sqrt {{1^2} + {2^2}} }} = 2\)

\( \Rightarrow \left| {c + 5} \right| = 2\sqrt 5 \Leftrightarrow c = - 5 \pm 2\sqrt 5 \) (thỏa mãn c ≠ – 3)

Vậy có 2 phương trình tiếp tuyến thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Tam thức bậc hai có dạng f(x) = ax2 + bx + c, với a ≠ 0.

Ta thấy chỉ có đa thức ở phương án B có dạng f(x) = ax2 + bx + c với a = –1, b = 2 và c = –10.

Vậy ta chọn phương án B.

Lời giải

Hướng dẫn giải

Ta có (C): x2 + y2 – 2x + 2y – 2 = 0

(x – 1)2 + (y + 1)2 = 4

Khi đó tâm của đường tròn (C) là I(1; – 1) và R = 2.

a) Vì đường thẳng () song song với (d) nên () có dạng 4x – 3y + c = 0 .

Ta có đường thẳng () tiếp xúc với (C) nên:

d(I, ∆) = \(\frac{{\left| {4.1 - 3.\left( { - 1} \right) + c} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\left| {c + 7} \right|}}{5} = 2\)

\( \Leftrightarrow \left| {c + 7} \right| = 10\)

\( \Leftrightarrow \left[ \begin{array}{l}c + 7 = 10\\c + 7 = - 10\end{array} \right.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP