Câu hỏi:

28/01/2023 1,292 Lưu

Cho hàm số y= f(x) fx>0,x. Biết hàm số y= f'(x) có bảng biên thiên như hình vẽ và f12=13716.

Cho hàm số y= f(x) và f(x)> 0, với mọi x thuộc R. Biết hàm số y= f'(x) có bảng biên thiên (ảnh 1)

Có bao nhiêu giá trị nguyên của m2020;2020 để hàm số gx=ex2+4mx5.fx đồng biến trên 1;12. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B.

Ta có: g'x=2x+4m.ex2+4mx5.fx+ex2+4mx5.f'x

g'x=2x+4m.fx+f'x.ex2+4mx5.

Yêu cầu bài toán g'x0,x1;12 và g'(x) = 0 chỉ xảy ra tại một số hữu hạn điểm thuộc 1;12.

2x+4m.fx+f'x0,x1;12 (vì ex2+4mx5>0)

2x+4mf'xfx,x1;12, (vì fx>0,x)

4m2xf'xfx,x1;12 *.

Xét hx=2xf'xfx,x1;12. Ta có h'x=2f"x.fxf'x2f2x.

Mà f"x<0fx>0,x1;12f"x.fxf'x2f2x<0,x1;12.

Từ đó suy ra h'x>0,x1;12. Vậy hàm số h(x) đồng biến trên 1;12.

Bảng biến thiên:

Cho hàm số y= f(x) và f(x)> 0, với mọi x thuộc R. Biết hàm số y= f'(x) có bảng biên thiên (ảnh 2)

Vậy điều kiện *4mh124m2.12f'12f124m225137m225548.

Lại có mm2020;2020m1;2;3;...;2020.

Vậy có 2020 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn A.

Hàm số xác định 3x>0x<3.

Vậy tập xác định của hàm số D=;3.

Câu 2

Lời giải

Chọn A.

a>0;b>0 nên ta có log3a=log27a2blog3a=13log3a2b3log3a=log3a2b

log3a3=log3a2ba3=a2ba=ba2=b.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP