Câu hỏi:

12/07/2024 2,027

Từ điểm A nằm ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là hai tiếp điểm). Vẽ cát tuyến ADE của đường tròn (O) (điểm D nằm giữa hai điểm A và E), gọi I là trung điểm của DE.

a) Chứng minh: OI  DE và 5 điểm A, B, I, O, C cùng thuộc một đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Từ điểm A nằm ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là hai tiếp điểm). Vẽ cát tuyến ADE của đường tròn (O)  (ảnh 1)

a) Chứng minh: OIDE và 5 điểm A, B, I, O, C cùng thuộc một đường tròn.

Ta có: OI là một phần đường kính, I là trung điểm của DE và DE là dây không qua tâm.

Nên OIDE

* Chứng minh 5 điểm A, B, I, O, C cùng thuộc một đường tròn

Ta có: ABO nội tiếp đường tròn đường kính OA (ABO vuông tại B)

ACO nội tiếp đường tròn đường kính OA (ACO vuông tại C)

AIO nội tiếp đường tròn đường kính OA (AIO vuông tại I)

Suy ra 5 điểm A, B, I, O, C cùng thuộc một đường tròn đường kính OA.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

b) Chứng minh: AB2 = AD.AE và AO  BC tại H.

Hai ABD và  AEB có:

BAE^ là góc chung

ABD^=AEB^ (góc n/t và góc tạo bởi tia t/t và d/c cùng chắn cung BC)          

Vậy ABD ~AEB (g-g)

ABAE=ADABAB2=AD.AE

* Chứng minh: AOBC tại H.

Ta có: OB = OC (bán kính (O)) và AB = AC (tính chất 2 tiếp tuyến cắt nhau)   

Suy ra OA là đường trung trực của BC OABC

Lời giải

Gọi x là số tiền lúc đầu ông A đã gửi vào ngân hàng (x > 0)

Tiền lãi một năm ông A nhận được từ ngân hàng: x.6,5%

Theo đề bài, ta có phương trình: x + 0,065x = 53250000

Suy ra x = 50.000.000

Vậy ông A đã gửi 50.000.000 đồng tiết kiệm vào ngân hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP