Câu hỏi:

12/07/2024 504

Cho phương trình (m+1)x2(2m+1)x+m1=0,   mlà tham số  (1).

Tìm các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt x1,x2 thoả mãn x12+x222010x1x2=2013.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Xét m = -1, pt (1) là phương trình bậc nhất không có hai nghiệm phân biệt.
Xét m-1
Phương trình: (m+1)x2(2m+1)x+m1=0   (12)
Ta có: Δ=(2m+1)24.(m+1)(m1)    =4m2+4m+14m2+4=4m+5
Phương trình (1) có hai nghiệm phân biệt x1, x2 khi và chỉ khi: 4m+5>0m>54
Khi đó, theo hệ thức Vi-ét ta có: x1+x2=2m+1m+1 và x1x2=m1m+1
 
Mặt khác: x12+x222010x1x2=2013
x1+x222012x1.x2=20132m+1m+122012.m1m+1=20134021m2+4022m=0
m=0 (thoả mãn (*)) hoặc m=40224021(thoả mãn (*))
Vậy m=0 hoặc m=40224021 là giá trị cần tìm

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có Δ'=(3)21.(2m3)=92m+3=122m

Phương trình (1) có hai nghiệm x1,x2 khi và chỉ khi:
122m02m12m6​​​   
Theo hệ thức Vi – ét, ta có: x1+x2=6x1.x2=2m3                  (3)
Theo đề bài, ta có: x12x2+x1x22=24x1x2(x1+x2)=24     (4)
Thay (3) vào (4) , ta được:
6(2m3)=242m3=42m=7m=72 (thoả mãn ĐK m6)
Vậy m=72 là giá trị cần tìm
 

Lời giải

c) Xét ADC có: AH vừa là đường cao, vừa là đường trung tuyến => ADC cân tại A => AC = AD => AC=AD  => sđAC  = sđAD
Xét (O) có: DEA^=CEA^ (2 góc nội tiếp cùng chắn hai cung bằng nhau)
=> EA là tia phân giác của DEC^.
Xét ΔCDE
Vì EA là tia phân giác của DEC^ (cm trên) nên EF là đường phân giác trong của tam giác CDE.    (8)
Suy ra: FCFD=ECED (9)
AEB^=900 (cm phần a) nên AEMB (10)
Từ (8) và (10) , suy ra: EM là đường phân giác ngoài của tam giác CDE.
Suy ra: MCMD=ECED (11)
Từ (9) và (11) , suy ra: FCFD=MCMD  => FC.MD=FD.MC(đpcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay