Câu hỏi:

31/01/2023 3,444

Cho hàm số f(x) f'x=x2021x12020x+1;x. Hàm số đã cho có bao nhiêu điểm cực trị?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

Tìm nghiệm bội lẻ của phương trình f'(x)

Cách giải:

Ta có: f'x=0x2021x12020x+1=0x=0nghiem boi lex=1nghiem boi chanx=1nghiem boi le.

Vậy hàm số f(x) có 2 điểm cực trị x=0,x=1.

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp:

- Áp dụng các công thức tính nguyên hàm: xndx=xn+1n+1+Cn1, sinxdx=cosx+C.

- Sử dụng giả thiết Fx=21 tìm hằng số C và suy ra Fx.

Cách giải:

Ta có Fx=fxdx=2xsinxdx=x2+cosx+C.

Mà F0=211+C=21C=20.

Vậy Fx=x2+cosx+20.

Chọn B.

Câu 2

Lời giải

Phương pháp:

- Chia tử thức cho mẫu thức.

- Áp dụng các công thức tính nguyên hàm: xndx=xn+1n+1+Cn1,dxax+b=1alnax+b+C.

Cách giải:

Ta có: fx=x22x+1x2=x+1x2.

fxdx=x+1x2dx=x22+lnx2+C.

Chọn B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP